|
|
@@ -18,6 +18,8 @@ from __future__ import print_function
|
|
|
|
|
|
import sys
|
|
|
import copy
|
|
|
+import os
|
|
|
+import os.path as osp
|
|
|
import numpy as np
|
|
|
import itertools
|
|
|
from paddlex.ppdet.metrics.map_utils import draw_pr_curve
|
|
|
@@ -131,7 +133,7 @@ def cocoapi_eval(anns,
|
|
|
results_flatten = list(itertools.chain(*results_per_category))
|
|
|
headers = ['category', 'AP'] * (num_columns // 2)
|
|
|
results_2d = itertools.zip_longest(
|
|
|
- * [results_flatten[i::num_columns] for i in range(num_columns)])
|
|
|
+ *[results_flatten[i::num_columns] for i in range(num_columns)])
|
|
|
table_data = [headers]
|
|
|
table_data += [result for result in results_2d]
|
|
|
table = AsciiTable(table_data)
|
|
|
@@ -215,3 +217,241 @@ def loadRes(coco_obj, anns):
|
|
|
res.dataset['annotations'] = anns
|
|
|
res.createIndex()
|
|
|
return res
|
|
|
+
|
|
|
+
|
|
|
+def makeplot(rs, ps, outDir, class_name, iou_type):
|
|
|
+ import matplotlib.pyplot as plt
|
|
|
+ cs = np.vstack([
|
|
|
+ np.ones((2, 3)),
|
|
|
+ np.array([0.31, 0.51, 0.74]),
|
|
|
+ np.array([0.75, 0.31, 0.30]),
|
|
|
+ np.array([0.36, 0.90, 0.38]),
|
|
|
+ np.array([0.50, 0.39, 0.64]),
|
|
|
+ np.array([1, 0.6, 0]),
|
|
|
+ ])
|
|
|
+ areaNames = ['allarea', 'small', 'medium', 'large']
|
|
|
+ types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
|
|
|
+ for i in range(len(areaNames)):
|
|
|
+ area_ps = ps[..., i, 0]
|
|
|
+ figure_title = iou_type + '-' + class_name + '-' + areaNames[i]
|
|
|
+ aps = [ps_.mean() for ps_ in area_ps]
|
|
|
+ ps_curve = [
|
|
|
+ ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps
|
|
|
+ ]
|
|
|
+ ps_curve.insert(0, np.zeros(ps_curve[0].shape))
|
|
|
+ fig = plt.figure()
|
|
|
+ ax = plt.subplot(111)
|
|
|
+ for k in range(len(types)):
|
|
|
+ ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5)
|
|
|
+ ax.fill_between(
|
|
|
+ rs,
|
|
|
+ ps_curve[k],
|
|
|
+ ps_curve[k + 1],
|
|
|
+ color=cs[k],
|
|
|
+ label=str(f'[{aps[k]:.3f}]' + types[k]), )
|
|
|
+ plt.xlabel('recall')
|
|
|
+ plt.ylabel('precision')
|
|
|
+ plt.xlim(0, 1.0)
|
|
|
+ plt.ylim(0, 1.0)
|
|
|
+ plt.title(figure_title)
|
|
|
+ plt.legend()
|
|
|
+ # plt.show()
|
|
|
+ fig.savefig(osp.join(outDir, f'{figure_title}.png'))
|
|
|
+ plt.close(fig)
|
|
|
+
|
|
|
+
|
|
|
+def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type,
|
|
|
+ areas=None):
|
|
|
+ """针对某个特定类别,分析忽略亚类混淆和类别混淆时的准确率。
|
|
|
+
|
|
|
+ Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/coco_error_analysis.py
|
|
|
+
|
|
|
+ Args:
|
|
|
+ k (int): 待分析类别的序号。
|
|
|
+ cocoDt (pycocotols.coco.COCO): 按COCO类存放的预测结果。
|
|
|
+ cocoGt (pycocotols.coco.COCO): 按COCO类存放的真值。
|
|
|
+ catId (int): 待分析类别在数据集中的类别id。
|
|
|
+ iou_type (str): iou计算方式,若为检测框,则设置为'bbox',若为像素级分割结果,则设置为'segm'。
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ int:
|
|
|
+ dict: 有关键字'ps_supercategory'和'ps_allcategory'。关键字'ps_supercategory'的键值是忽略亚类间
|
|
|
+ 混淆时的准确率,关键字'ps_allcategory'的键值是忽略类别间混淆时的准确率。
|
|
|
+
|
|
|
+ """
|
|
|
+
|
|
|
+ # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
|
|
|
+ # or matplotlib.backends is imported for the first time
|
|
|
+ # pycocotools import matplotlib
|
|
|
+ import matplotlib
|
|
|
+ matplotlib.use('Agg')
|
|
|
+ from pycocotools.coco import COCO
|
|
|
+ from pycocotools.cocoeval import COCOeval
|
|
|
+
|
|
|
+ nm = cocoGt.loadCats(catId)[0]
|
|
|
+ print(f'--------------analyzing {k + 1}-{nm["name"]}---------------')
|
|
|
+ ps_ = {}
|
|
|
+ dt = copy.deepcopy(cocoDt)
|
|
|
+ nm = cocoGt.loadCats(catId)[0]
|
|
|
+ imgIds = cocoGt.getImgIds()
|
|
|
+ dt_anns = dt.dataset['annotations']
|
|
|
+ select_dt_anns = []
|
|
|
+ for ann in dt_anns:
|
|
|
+ if ann['category_id'] == catId:
|
|
|
+ select_dt_anns.append(ann)
|
|
|
+ dt.dataset['annotations'] = select_dt_anns
|
|
|
+ dt.createIndex()
|
|
|
+ # compute precision but ignore superclass confusion
|
|
|
+ gt = copy.deepcopy(cocoGt)
|
|
|
+ child_catIds = gt.getCatIds(supNms=[nm['supercategory']])
|
|
|
+ for idx, ann in enumerate(gt.dataset['annotations']):
|
|
|
+ if ann['category_id'] in child_catIds and ann['category_id'] != catId:
|
|
|
+ gt.dataset['annotations'][idx]['ignore'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['iscrowd'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['category_id'] = catId
|
|
|
+ cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
|
|
|
+ cocoEval.params.imgIds = imgIds
|
|
|
+ cocoEval.params.maxDets = [100]
|
|
|
+ cocoEval.params.iouThrs = [0.1]
|
|
|
+ cocoEval.params.useCats = 1
|
|
|
+ if areas:
|
|
|
+ cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
|
|
|
+ [areas[0], areas[1]], [areas[1], areas[2]]]
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :]
|
|
|
+ ps_['ps_supercategory'] = ps_supercategory
|
|
|
+ # compute precision but ignore any class confusion
|
|
|
+ gt = copy.deepcopy(cocoGt)
|
|
|
+ for idx, ann in enumerate(gt.dataset['annotations']):
|
|
|
+ if ann['category_id'] != catId:
|
|
|
+ gt.dataset['annotations'][idx]['ignore'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['iscrowd'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['category_id'] = catId
|
|
|
+ cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
|
|
|
+ cocoEval.params.imgIds = imgIds
|
|
|
+ cocoEval.params.maxDets = [100]
|
|
|
+ cocoEval.params.iouThrs = [0.1]
|
|
|
+ cocoEval.params.useCats = 1
|
|
|
+ if areas:
|
|
|
+ cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
|
|
|
+ [areas[0], areas[1]], [areas[1], areas[2]]]
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :]
|
|
|
+ ps_['ps_allcategory'] = ps_allcategory
|
|
|
+ return k, ps_
|
|
|
+
|
|
|
+
|
|
|
+def coco_error_analysis(eval_details_file=None,
|
|
|
+ gt=None,
|
|
|
+ pred_bbox=None,
|
|
|
+ pred_mask=None,
|
|
|
+ save_dir='./output'):
|
|
|
+ """逐个分析模型预测错误的原因,并将分析结果以图表的形式展示。
|
|
|
+ 分析结果说明参考COCODataset官网给出分析工具说明https://cocodataset.org/#detection-eval。
|
|
|
+
|
|
|
+ Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py
|
|
|
+
|
|
|
+ Args:
|
|
|
+ eval_details_file (str): 模型评估结果的保存路径,包含真值信息和预测结果。
|
|
|
+ gt (list): 数据集的真值信息。默认值为None。
|
|
|
+ pred_bbox (list): 模型在数据集上的预测框。默认值为None。
|
|
|
+ pred_mask (list): 模型在数据集上的预测mask。默认值为None。
|
|
|
+ save_dir (str): 可视化结果保存路径。默认值为'./output'。
|
|
|
+
|
|
|
+ Note:
|
|
|
+ eval_details_file的优先级更高,只要eval_details_file不为None,
|
|
|
+ 就会从eval_details_file提取真值信息和预测结果做分析。
|
|
|
+ 当eval_details_file为None时,则用gt、pred_mask、pred_mask做分析。
|
|
|
+
|
|
|
+ """
|
|
|
+
|
|
|
+ import multiprocessing as mp
|
|
|
+ # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
|
|
|
+ # or matplotlib.backends is imported for the first time
|
|
|
+ # pycocotools import matplotlib
|
|
|
+ import matplotlib
|
|
|
+ matplotlib.use('Agg')
|
|
|
+ from pycocotools.coco import COCO
|
|
|
+ from pycocotools.cocoeval import COCOeval
|
|
|
+
|
|
|
+ if eval_details_file is not None:
|
|
|
+ import json
|
|
|
+ with open(eval_details_file, 'r') as f:
|
|
|
+ eval_details = json.load(f)
|
|
|
+ pred_bbox = eval_details['bbox']
|
|
|
+ if 'mask' in eval_details:
|
|
|
+ pred_mask = eval_details['mask']
|
|
|
+ gt = eval_details['gt']
|
|
|
+ if gt is None or pred_bbox is None:
|
|
|
+ raise Exception(
|
|
|
+ "gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask."
|
|
|
+ )
|
|
|
+ if pred_bbox is not None and len(pred_bbox) == 0:
|
|
|
+ raise Exception("There is no predicted bbox.")
|
|
|
+ if pred_mask is not None and len(pred_mask) == 0:
|
|
|
+ raise Exception("There is no predicted mask.")
|
|
|
+
|
|
|
+ def _analyze_results(cocoGt, cocoDt, res_type, out_dir):
|
|
|
+ directory = osp.dirname(osp.join(out_dir, ''))
|
|
|
+ if not osp.exists(directory):
|
|
|
+ logging.info('-------------create {}-----------------'.format(
|
|
|
+ out_dir))
|
|
|
+ os.makedirs(directory)
|
|
|
+
|
|
|
+ imgIds = cocoGt.getImgIds()
|
|
|
+ res_out_dir = osp.join(out_dir, res_type, '')
|
|
|
+ res_directory = os.path.dirname(res_out_dir)
|
|
|
+ if not os.path.exists(res_directory):
|
|
|
+ logging.info('-------------create {}-----------------'.format(
|
|
|
+ res_out_dir))
|
|
|
+ os.makedirs(res_directory)
|
|
|
+ iou_type = res_type
|
|
|
+ cocoEval = COCOeval(
|
|
|
+ copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type)
|
|
|
+ cocoEval.params.imgIds = imgIds
|
|
|
+ cocoEval.params.iouThrs = [.75, .5, .1]
|
|
|
+ cocoEval.params.maxDets = [100]
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ ps = cocoEval.eval['precision']
|
|
|
+ ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))])
|
|
|
+ catIds = cocoGt.getCatIds()
|
|
|
+ recThrs = cocoEval.params.recThrs
|
|
|
+ thread_num = mp.cpu_count() if mp.cpu_count() < 8 else 8
|
|
|
+ thread_pool = mp.pool.ThreadPool(thread_num)
|
|
|
+ args = [(k, cocoDt, cocoGt, catId, iou_type)
|
|
|
+ for k, catId in enumerate(catIds)]
|
|
|
+ analyze_results = thread_pool.starmap(analyze_individual_category,
|
|
|
+ args)
|
|
|
+ for k, catId in enumerate(catIds):
|
|
|
+ nm = cocoGt.loadCats(catId)[0]
|
|
|
+ logging.info('--------------saving {}-{}---------------'.format(
|
|
|
+ k + 1, nm['name']))
|
|
|
+ analyze_result = analyze_results[k]
|
|
|
+ assert k == analyze_result[0], ""
|
|
|
+ ps_supercategory = analyze_result[1]['ps_supercategory']
|
|
|
+ ps_allcategory = analyze_result[1]['ps_allcategory']
|
|
|
+ # compute precision but ignore superclass confusion
|
|
|
+ ps[3, :, k, :, :] = ps_supercategory
|
|
|
+ # compute precision but ignore any class confusion
|
|
|
+ ps[4, :, k, :, :] = ps_allcategory
|
|
|
+ # fill in background and false negative errors and plot
|
|
|
+ ps[ps == -1] = 0
|
|
|
+ ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0
|
|
|
+ ps[6, :, k, :, :] = 1.0
|
|
|
+ makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type)
|
|
|
+ makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
|
|
|
+
|
|
|
+ coco_gt = COCO()
|
|
|
+ coco_gt.dataset = gt
|
|
|
+ coco_gt.createIndex()
|
|
|
+
|
|
|
+ if pred_bbox is not None:
|
|
|
+ coco_dt = loadRes(coco_gt, pred_bbox)
|
|
|
+ _analyze_results(coco_gt, coco_dt, res_type='bbox', out_dir=save_dir)
|
|
|
+ if pred_mask is not None:
|
|
|
+ coco_dt = loadRes(coco_gt, pred_mask)
|
|
|
+ _analyze_results(coco_gt, coco_dt, res_type='segm', out_dir=save_dir)
|
|
|
+ logging.info("The analysis figures are saved in {}".format(save_dir))
|