Procházet zdrojové kódy

Merge pull request #1482 from FlyingQianMM/develop_qh

rename pdx.model to pdx.det in example codes
FlyingQianMM před 3 roky
rodič
revize
1bb1630fc1

+ 1 - 1
examples/defect_detection/README.md

@@ -87,7 +87,7 @@ eval_dataset = pdx.datasets.CocoDetection(
 # 初始化模型,并进行训练
 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
 num_classes = len(train_dataset.labels)
-model = pdx.models.MaskRCNN(
+model = pdx.det.MaskRCNN(
     num_classes=num_classes, backbone='ResNet50', with_fpn=True)
 ```
 ``` bash

+ 1 - 1
examples/defect_detection/code/train.py

@@ -34,7 +34,7 @@ eval_dataset = pdx.datasets.CocoDetection(
 # 初始化模型,并进行训练
 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
 num_classes = len(train_dataset.labels)
-model = pdx.models.MaskRCNN(
+model = pdx.det.MaskRCNN(
     num_classes=num_classes, backbone='ResNet50', with_fpn=True)
 
 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155

+ 1 - 4
examples/fireSmoke_detection/README.md

@@ -157,7 +157,7 @@ PaddleX提供了5种目标检测模型:FasterRCNN、YOLOv3、PP-YOLO、PP-YOLO
 * eval_transforms:验证预处理参数,可以增加、修改预处理方法和参数;
 * train_dataset:训练使用数据集,修改图片路径、标签路径以及是否进行数据shuffle;
 * eval_dataset:验证使用数据集,修改图片路径、标签路径以及是否进行数据shuffle;
-* pdx.models.*:设置不同的模型,可选[FasterRCNN、YOLOv3、PP-YOLO、PP-YOLO-tiny、PP-YOLOv2,这里选择PP-YOLOv2;
+* pdx.det.*:设置不同的模型,可选[FasterRCNN、YOLOv3、PP-YOLO、PP-YOLO-tiny、PP-YOLOv2,这里选择PP-YOLOv2;
 * model.train:设置训练epoch、训练和验证数据集、batch size、学习率learning rate、warmup step、lr衰减lr_decay_epoch、模型保存间隔save_interval_epoch、模型保存路径save_dir,详细介绍[训练参数](https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md)。
 
 PaddleX提供了单卡/多卡训练模型,满足用户多种训练需求
@@ -347,6 +347,3 @@ python infer.py
 ## 开源数据
 
 * 非常感谢[gengyanlei](https://github.com/gengyanlei/fire-smoke-detect-yolov4)和[Thomas-yanxin](https://aistudio.baidu.com/aistudio/datasetdetail/90352/0)开源的火灾和烟雾数据集
-
-  
-

+ 2 - 2
examples/meter_reader/README.md

@@ -166,7 +166,7 @@ eval_dataset = pdx.datasets.CocoDetection(
 
 ```python
 num_classes = len(train_dataset.labels)
-model = pdx.models.PPYOLOv2(
+model = pdx.det.PPYOLOv2(
     num_classes=num_classes, backbone='ResNet50_vd_dcn')
 
 ```
@@ -250,7 +250,7 @@ eval_dataset = pdx.datasets.SegDataset(
 
 ```python
 num_classes = len(train_dataset.labels)
-model = pdx.models.DeepLabV3P(num_classes=num_classes, backbone='ResNet50_vd', use_mixed_loss=True)
+model = pdx.seg.DeepLabV3P(num_classes=num_classes, backbone='ResNet50_vd', use_mixed_loss=True)
 
 ```
 

+ 1 - 1
examples/rebar_count/README.md

@@ -105,7 +105,7 @@ eval_dataset = pdx.datasets.VOCDetection(
 # 初始化模型,并进行训练
 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
 num_classes = len(train_dataset.labels)
-model = pdx.models.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
+model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
 ```
 ``` bash
 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155

+ 1 - 1
examples/rebar_count/code/train.py

@@ -39,7 +39,7 @@ eval_dataset = pdx.datasets.VOCDetection(
 # 初始化模型,并进行训练
 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
 num_classes = len(train_dataset.labels)
-model = pdx.models.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
+model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
 
 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155
 # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html

+ 1 - 1
examples/robot_grab/README.md

@@ -109,7 +109,7 @@ eval_dataset = pdx.datasets.CocoDetection(
 # 初始化模型,并进行训练
 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
 num_classes = len(train_dataset.labels)
-model = pdx.models.MaskRCNN(
+model = pdx.det.MaskRCNN(
     num_classes=num_classes, backbone='ResNet50', with_fpn=True)
 ```
 ``` bash

+ 1 - 1
examples/robot_grab/code/train.py

@@ -32,7 +32,7 @@ eval_dataset = pdx.datasets.CocoDetection(
 # 初始化模型,并进行训练
 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
 num_classes = len(train_dataset.labels)
-model = pdx.models.MaskRCNN(
+model = pdx.det.MaskRCNN(
     num_classes=num_classes, backbone='ResNet50', with_fpn=True)
 
 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155