|
|
@@ -201,36 +201,52 @@ Layout parsing is a technology that extracts structured information from documen
|
|
|
</thead>
|
|
|
<tbody>
|
|
|
<tr>
|
|
|
+<td>PP-OCRv5_server_det</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_det_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_det_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>83.8</td>
|
|
|
+<td>89.55 / 70.19</td>
|
|
|
+<td>371.65 / 371.65</td>
|
|
|
+<td>84.3</td>
|
|
|
+<td>PP-OCRv5 server-side text detection model with higher accuracy, suitable for deployment on high-performance servers</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>PP-OCRv5_mobile_det</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_det_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_det_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>79.0</td>
|
|
|
+<td>8.79 / 3.13</td>
|
|
|
+<td>51.00 / 28.58</td>
|
|
|
+<td>4.7</td>
|
|
|
+<td>PP-OCRv5 mobile-side text detection model with higher efficiency, suitable for deployment on edge devices</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
<td>PP-OCRv4_server_det</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_det_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_det_pretrained.pdparams">Training Model</a></td>
|
|
|
-<td>82.56</td>
|
|
|
+<td>69.2</td>
|
|
|
<td>83.34 / 80.91</td>
|
|
|
<td>442.58 / 442.58</td>
|
|
|
<td>109</td>
|
|
|
-<td>The server-side text detection model of PP-OCRv4, with higher accuracy, suitable for deployment on high-performance servers.</td>
|
|
|
+<td>PP-OCRv4 server-side text detection model with higher accuracy, suitable for deployment on high-performance servers</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>PP-OCRv4_mobile_det</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_mobile_det_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_det_pretrained.pdparams">Training Model</a></td>
|
|
|
-<td>77.35</td>
|
|
|
+<td>63.8</td>
|
|
|
<td>8.79 / 3.13</td>
|
|
|
<td>51.00 / 28.58</td>
|
|
|
<td>4.7</td>
|
|
|
-<td>The mobile text detection model of PP-OCRv4, with higher efficiency, suitable for deployment on edge devices.</td>
|
|
|
+<td>PP-OCRv4 mobile-side text detection model with higher efficiency, suitable for deployment on edge devices</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>PP-OCRv3_mobile_det</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv3_mobile_det_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv3_mobile_det_pretrained.pdparams">Training Model</a></td>
|
|
|
-<td>78.68</td>
|
|
|
+<td>Accuracy comparable to PP-OCRv4_mobile_det</td>
|
|
|
<td>8.44 / 2.91</td>
|
|
|
<td>27.87 / 27.87</td>
|
|
|
<td>2.1</td>
|
|
|
-<td>The mobile text detection model of PP-OCRv3, with higher efficiency, suitable for deployment on edge devices.</td>
|
|
|
+<td>PP-OCRv3 mobile text detection model with higher efficiency, suitable for edge device deployment</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>PP-OCRv3_server_det</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv3_server_det_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv3_server_det_pretrained.pdparams">Training Model</a></td>
|
|
|
-<td>80.11</td>
|
|
|
+<td>Accuracy comparable to PP-OCRv4_server_det</td>
|
|
|
<td>65.41 / 13.67</td>
|
|
|
<td>305.07 / 305.07</td>
|
|
|
<td>102.1</td>
|
|
|
-<td>The server-side text detection model of PP-OCRv3, with higher accuracy, suitable for deployment on high-performance servers.</td>
|
|
|
+<td>PP-OCRv3 server text detection model with higher accuracy, suitable for deployment on high-performance servers</td>
|
|
|
</tr>
|
|
|
</tbody>
|
|
|
</table>
|