|
|
@@ -15,6 +15,20 @@ import numpy as np
|
|
|
from paddlex.inference.pipelines.table_recognition.result import SingleTableRecognitionResult
|
|
|
from paddlex.inference.pipelines.table_recognition.pipeline_v2 import OCRResult
|
|
|
|
|
|
+def _normalize_bbox(box: list) -> list:
|
|
|
+ """
|
|
|
+ 将8点坐标或4点坐标统一转换为 [x1, y1, x2, y2]
|
|
|
+ """
|
|
|
+ if len(box) == 8:
|
|
|
+ # 8点坐标:取最小和最大值
|
|
|
+ xs = [box[0], box[2], box[4], box[6]]
|
|
|
+ ys = [box[1], box[3], box[5], box[7]]
|
|
|
+ return [min(xs), min(ys), max(xs), max(ys)]
|
|
|
+ elif len(box) == 4:
|
|
|
+ return box[:4]
|
|
|
+ else:
|
|
|
+ raise ValueError(f"Unsupported bbox format: {box}")
|
|
|
+
|
|
|
# --- 1. 核心算法:基于排序和行分组的HTML结构生成 ---
|
|
|
def filter_nested_boxes(boxes: List[list]) -> List[list]:
|
|
|
"""
|
|
|
@@ -93,24 +107,41 @@ def build_robust_html_from_cells(cells_det_results: List[list]) -> str:
|
|
|
if not cells_det_results:
|
|
|
return "<table><tbody></tbody></table>"
|
|
|
|
|
|
- cells = filter_nested_boxes(cells_det_results)
|
|
|
+ # ✅ 关键修复:使用副本防止修改原始列表
|
|
|
+ import copy
|
|
|
+ cells_copy = copy.deepcopy(cells_det_results)
|
|
|
+ cells = filter_nested_boxes(cells_copy)
|
|
|
cells.sort(key=lambda c: (c[1], c[0]))
|
|
|
|
|
|
rows = []
|
|
|
if cells:
|
|
|
current_row = [cells[0]]
|
|
|
- row_anchor_y = (cells[0][1] + cells[0][3]) / 2
|
|
|
- row_anchor_height = cells[0][3] - cells[0][1]
|
|
|
+ # ✅ 使用该行的Y范围而不是单个锚点
|
|
|
+ row_y1 = cells[0][1]
|
|
|
+ row_y2 = cells[0][3]
|
|
|
|
|
|
for cell in cells[1:]:
|
|
|
- cell_y_center = (cell[1] + cell[3]) / 2
|
|
|
- if abs(cell_y_center - row_anchor_y) < row_anchor_height * 0.7:
|
|
|
+ # ✅ 计算垂直方向的重叠
|
|
|
+ overlap_y1 = max(row_y1, cell[1])
|
|
|
+ overlap_y2 = min(row_y2, cell[3])
|
|
|
+ overlap_height = max(0, overlap_y2 - overlap_y1)
|
|
|
+
|
|
|
+ # 单元格和当前行的平均高度
|
|
|
+ cell_height = cell[3] - cell[1]
|
|
|
+ row_height = row_y2 - row_y1
|
|
|
+ avg_height = (cell_height + row_height) / 2
|
|
|
+
|
|
|
+ # ✅ 重叠高度超过平均高度的50%,认为是同一行
|
|
|
+ if overlap_height > avg_height * 0.5:
|
|
|
current_row.append(cell)
|
|
|
+ # 更新该行的Y范围(扩展以包含新单元格)
|
|
|
+ row_y1 = min(row_y1, cell[1])
|
|
|
+ row_y2 = max(row_y2, cell[3])
|
|
|
else:
|
|
|
rows.append(current_row)
|
|
|
current_row = [cell]
|
|
|
- row_anchor_y = (cell[1] + cell[3]) / 2
|
|
|
- row_anchor_height = cell[3] - cell[1]
|
|
|
+ row_y1 = cell[1]
|
|
|
+ row_y2 = cell[3]
|
|
|
rows.append(current_row)
|
|
|
|
|
|
html = "<table><tbody>"
|
|
|
@@ -178,8 +209,127 @@ def fill_html_with_ocr_by_bbox(html_skeleton: str, ocr_dt_boxes: list, ocr_texts
|
|
|
# 保存原始方法的引用
|
|
|
_original_predict_single = None
|
|
|
|
|
|
+def infer_missing_cells_from_ocr(
|
|
|
+ detected_cells: List[list],
|
|
|
+ cells_texts_list: List[str],
|
|
|
+ overall_ocr_boxes: List[list],
|
|
|
+ overall_ocr_texts: List[str],
|
|
|
+ table_box: list
|
|
|
+) -> tuple[List[list], List[str]]:
|
|
|
+ """
|
|
|
+ 根据全局OCR结果推断缺失的单元格
|
|
|
+
|
|
|
+ Args:
|
|
|
+ detected_cells: 已检测到的单元格坐标 [[x1,y1,x2,y2], ...]
|
|
|
+ overall_ocr_boxes: 全局OCR框坐标
|
|
|
+ overall_ocr_texts: 全局OCR文本
|
|
|
+ table_box: 表格区域 [x1,y1,x2,y2]
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 补全后的单元格列表
|
|
|
+ """
|
|
|
+ import copy
|
|
|
+
|
|
|
+ # 1. 找出未被覆盖的OCR框
|
|
|
+ uncovered_ocr_boxes = []
|
|
|
+ uncovered_ocr_texts = []
|
|
|
+
|
|
|
+ for ocr_box, ocr_text in zip(overall_ocr_boxes, overall_ocr_texts):
|
|
|
+ # 计算OCR框中心点
|
|
|
+ ocr_cx = (ocr_box[0] + ocr_box[2]) / 2
|
|
|
+ ocr_cy = (ocr_box[1] + ocr_box[3]) / 2
|
|
|
+
|
|
|
+ # 检查是否被任何单元格覆盖
|
|
|
+ is_covered = False
|
|
|
+ for cell in detected_cells:
|
|
|
+ if cell[0] <= ocr_cx <= cell[2] and cell[1] <= ocr_cy <= cell[3]:
|
|
|
+ is_covered = True
|
|
|
+ break
|
|
|
+
|
|
|
+ if not is_covered:
|
|
|
+ uncovered_ocr_boxes.append(ocr_box)
|
|
|
+ uncovered_ocr_texts.append(ocr_text)
|
|
|
+
|
|
|
+ if not uncovered_ocr_boxes:
|
|
|
+ return detected_cells, cells_texts_list # 没有漏检
|
|
|
+
|
|
|
+ # 2. 按行分组已检测的单元格
|
|
|
+ cells_sorted = sorted(detected_cells, key=lambda c: (c[1], c[0]))
|
|
|
+ rows = []
|
|
|
+ if cells_sorted:
|
|
|
+ current_row = [cells_sorted[0]]
|
|
|
+ row_y = (cells_sorted[0][1] + cells_sorted[0][3]) / 2
|
|
|
+ row_height = cells_sorted[0][3] - cells_sorted[0][1]
|
|
|
+
|
|
|
+ for cell in cells_sorted[1:]:
|
|
|
+ cell_y = (cell[1] + cell[3]) / 2
|
|
|
+ if abs(cell_y - row_y) < row_height * 0.7:
|
|
|
+ current_row.append(cell)
|
|
|
+ else:
|
|
|
+ rows.append(current_row)
|
|
|
+ current_row = [cell]
|
|
|
+ row_y = (cell[1] + cell[3]) / 2
|
|
|
+ row_height = cell[3] - cell[1]
|
|
|
+ rows.append(current_row)
|
|
|
+
|
|
|
+ # 3. 为每个未覆盖的OCR框推断单元格
|
|
|
+ inferred_cells = []
|
|
|
+ inferred_texts = []
|
|
|
+ for ocr_box, ocr_text in zip(uncovered_ocr_boxes, uncovered_ocr_texts):
|
|
|
+ ocr_cy = (ocr_box[1] + ocr_box[3]) / 2
|
|
|
+
|
|
|
+ # 找到OCR框所在的行
|
|
|
+ target_row_idx = None
|
|
|
+ for i, row_cells in enumerate(rows):
|
|
|
+ row_y1 = min(c[1] for c in row_cells)
|
|
|
+ row_y2 = max(c[3] for c in row_cells)
|
|
|
+ if row_y1 <= ocr_cy <= row_y2:
|
|
|
+ target_row_idx = i
|
|
|
+ break
|
|
|
+
|
|
|
+ if target_row_idx is None:
|
|
|
+ # 无法确定所属行,跳过
|
|
|
+ print(f"⚠️ 无法为OCR文本 '{ocr_text}' 确定所属行")
|
|
|
+ continue
|
|
|
+
|
|
|
+ target_row = rows[target_row_idx]
|
|
|
+
|
|
|
+ # 4. 推断单元格边界
|
|
|
+ # 上下边界:使用该行的统一高度
|
|
|
+ cell_y1 = min(c[1] for c in target_row)
|
|
|
+ cell_y2 = max(c[3] for c in target_row)
|
|
|
+
|
|
|
+ # 左右边界:根据OCR框位置和相邻单元格推断
|
|
|
+ ocr_cx = (ocr_box[0] + ocr_box[2]) / 2
|
|
|
+
|
|
|
+ # 找左边最近的单元格
|
|
|
+ left_cells = [c for c in target_row if c[2] < ocr_cx]
|
|
|
+ if left_cells:
|
|
|
+ cell_x1 = max(c[2] for c in left_cells) # 左边单元格的右边界
|
|
|
+ else:
|
|
|
+ cell_x1 = table_box[0] # 表格左边界
|
|
|
+
|
|
|
+ # 找右边最近的单元格
|
|
|
+ right_cells = [c for c in target_row if c[0] > ocr_cx]
|
|
|
+ if right_cells:
|
|
|
+ cell_x2 = min(c[0] for c in right_cells) # 右边单元格的左边界
|
|
|
+ else:
|
|
|
+ cell_x2 = table_box[2] # 表格右边界
|
|
|
+
|
|
|
+ # 创建推断的单元格
|
|
|
+ inferred_cell = [cell_x1, cell_y1, cell_x2, cell_y2]
|
|
|
+ inferred_cells.append(inferred_cell)
|
|
|
+ inferred_texts.append(ocr_text)
|
|
|
+
|
|
|
+ print(f"✅ 为OCR文本 '{ocr_text}' 推断单元格: {inferred_cell}")
|
|
|
+
|
|
|
+ # 5. 合并检测到的和推断的单元格
|
|
|
+ all_cells = detected_cells + inferred_cells
|
|
|
+ all_texts = cells_texts_list + inferred_texts
|
|
|
+ return all_cells, all_texts
|
|
|
+
|
|
|
+
|
|
|
def enhanced_predict_single_table_recognition_res(
|
|
|
- # self, *args, **kwargs):
|
|
|
self,
|
|
|
image_array: np.ndarray,
|
|
|
overall_ocr_res: OCRResult,
|
|
|
@@ -191,13 +341,10 @@ def enhanced_predict_single_table_recognition_res(
|
|
|
use_ocr_results_with_table_cells: bool = True,
|
|
|
flag_find_nei_text: bool = True,
|
|
|
) -> SingleTableRecognitionResult:
|
|
|
- """
|
|
|
- 这是将被注入到 _TableRecognitionPipelineV2 实例中的增强版方法。
|
|
|
- 它调用我们新的、解耦的结构生成和内容填充逻辑。
|
|
|
- """
|
|
|
+ """增强版方法 - 使用OCR引导的单元格补全"""
|
|
|
print(">>> [Adapter] enhanced_predict_single_table_recognition_res called")
|
|
|
|
|
|
- # 🎯 复用原始逻辑来获取 table_cells_result
|
|
|
+ # 🎯 Step 1: 获取table_cells_result (原始逻辑)
|
|
|
table_cls_pred = list(self.table_cls_model(image_array))[0]
|
|
|
table_cls_result = self.extract_results(table_cls_pred, "cls")
|
|
|
|
|
|
@@ -208,32 +355,76 @@ def enhanced_predict_single_table_recognition_res(
|
|
|
|
|
|
table_cells_result, table_cells_score = self.extract_results(table_cells_pred, "det")
|
|
|
table_cells_result, table_cells_score = self.cells_det_results_nms(table_cells_result, table_cells_score)
|
|
|
- cells_texts_list = self.gen_ocr_with_table_cells(image_array, table_cells_result)
|
|
|
-
|
|
|
- # 🎯 注入我们的核心逻辑
|
|
|
- # 只有当 use_wired_table_cells_trans_to_html 为 True 时,才使用我们的新方法
|
|
|
- # 这样可以保持与原始行为的兼容性,并提供一个开关
|
|
|
- if use_wired_table_cells_trans_to_html:
|
|
|
- print(">>> [Adapter] Using robust HTML generation from cells.")
|
|
|
- # 步骤1: 使用我们鲁棒的算法生成HTML骨架
|
|
|
- html_skeleton = build_robust_html_from_cells(table_cells_result)
|
|
|
+ table_cells_result.sort(key=lambda c: (c[1], c[0]))
|
|
|
+
|
|
|
+ # 🎯 Step 2: 坐标转换
|
|
|
+ from paddlex.inference.pipelines.table_recognition.table_recognition_post_processing_v2 import (
|
|
|
+ convert_to_four_point_coordinates,
|
|
|
+ convert_table_structure_pred_bbox,
|
|
|
+ get_sub_regions_ocr_res
|
|
|
+ )
|
|
|
+ import numpy as np
|
|
|
+
|
|
|
+ # 转换为4点坐标
|
|
|
+ table_cells_result_4pt = convert_to_four_point_coordinates(table_cells_result)
|
|
|
+
|
|
|
+ # 准备坐标转换参数
|
|
|
+ table_box_array = np.array([table_box])
|
|
|
+ crop_start_point = [table_box[0], table_box[1]]
|
|
|
+ img_shape = overall_ocr_res["doc_preprocessor_res"]["output_img"].shape[0:2]
|
|
|
+
|
|
|
+ # 转换到原图坐标系
|
|
|
+ table_cells_result_orig = convert_table_structure_pred_bbox(
|
|
|
+ table_cells_result_4pt, crop_start_point, img_shape
|
|
|
+ )
|
|
|
+ # 处理NumPy数组
|
|
|
+ if isinstance(table_cells_result_orig, np.ndarray):
|
|
|
+ table_cells_result_orig = table_cells_result_orig.tolist()
|
|
|
+ table_cells_result_orig.sort(key=lambda c: (c[1], c[0]))
|
|
|
|
|
|
- # 步骤2: 使用全局OCR结果和Bbox来填充内容
|
|
|
- pred_html = fill_html_with_ocr_by_bbox(html_skeleton, table_cells_result, cells_texts_list)
|
|
|
+ # 🎯 Step 3: 获取表格区域的OCR结果
|
|
|
+ table_ocr_pred = get_sub_regions_ocr_res(overall_ocr_res, table_box_array)
|
|
|
+
|
|
|
+ # 🎯 Step 4: **关键改进** - OCR引导的单元格补全
|
|
|
+ if use_wired_table_cells_trans_to_html and use_ocr_results_with_table_cells:
|
|
|
+ # ✅ 对每个单元格做OCR(使用裁剪前的坐标)
|
|
|
+ cells_texts_list = self.gen_ocr_with_table_cells(image_array, table_cells_result)
|
|
|
+ # ✅ 补全缺失的单元格
|
|
|
+ completed_cells, cells_texts_list = infer_missing_cells_from_ocr(
|
|
|
+ detected_cells=table_cells_result_orig,
|
|
|
+ cells_texts_list=cells_texts_list,
|
|
|
+ overall_ocr_boxes=table_ocr_pred["rec_boxes"],
|
|
|
+ overall_ocr_texts=table_ocr_pred["rec_texts"],
|
|
|
+ table_box=table_box
|
|
|
+ )
|
|
|
|
|
|
+ # ✅ 生成HTML骨架(使用转换后的原图坐标)
|
|
|
+ html_skeleton = build_robust_html_from_cells(completed_cells)
|
|
|
+
|
|
|
+ # ✅ 填充内容(使用单元格中心点坐标和单元格OCR文本)
|
|
|
+ pred_html = fill_html_with_ocr_by_bbox(
|
|
|
+ html_skeleton,
|
|
|
+ completed_cells, # ✅ 单元格bbox
|
|
|
+ cells_texts_list # ✅ 单元格OCR文本
|
|
|
+ )
|
|
|
+
|
|
|
single_img_res = {
|
|
|
- "cell_box_list": table_cells_result,
|
|
|
- "table_ocr_pred": {}, # 内容已填充,无需单独的 table_ocr_pred
|
|
|
+ "cell_box_list": completed_cells,
|
|
|
+ "table_ocr_pred": table_ocr_pred, # 保留完整OCR信息
|
|
|
"pred_html": pred_html,
|
|
|
}
|
|
|
- # 构造并返回结果
|
|
|
+
|
|
|
res = SingleTableRecognitionResult(single_img_res)
|
|
|
- res["neighbor_texts"] = "" # 保持字段存在
|
|
|
+ res["neighbor_texts"] = ""
|
|
|
return res
|
|
|
else:
|
|
|
- # 🎯 如果开关关闭,则调用原始的、未被补丁的方法
|
|
|
- print(">>> [Adapter] Falling back to original predict_single_table_recognition_res.")
|
|
|
- return _original_predict_single(self, *args, **kwargs)
|
|
|
+ # 回退到原始实现
|
|
|
+ return _original_predict_single(
|
|
|
+ self, image_array, overall_ocr_res, table_box,
|
|
|
+ use_e2e_wired_table_rec_model, use_e2e_wireless_table_rec_model,
|
|
|
+ use_wired_table_cells_trans_to_html, use_wireless_table_cells_trans_to_html,
|
|
|
+ use_ocr_results_with_table_cells, flag_find_nei_text
|
|
|
+ )
|
|
|
|
|
|
|
|
|
def apply_table_recognition_adapter():
|