|
|
@@ -43,7 +43,7 @@ class AttributeRecPipeline(BasePipeline):
|
|
|
self._crop_by_boxes = CropByBoxes()
|
|
|
self._img_reader = ReadImage(format="BGR")
|
|
|
|
|
|
- self.det_threshold = config["SubModules"]["Detection"].get("threshold", 0.7)
|
|
|
+ self.det_threshold = config["SubModules"]["Detection"].get("threshold", 0.5)
|
|
|
self.cls_threshold = config["SubModules"]["Classification"].get(
|
|
|
"threshold", 0.7
|
|
|
)
|
|
|
@@ -76,12 +76,12 @@ class AttributeRecPipeline(BasePipeline):
|
|
|
def get_final_result(self, input_data, raw_img, det_res, rec_res):
|
|
|
single_img_res = {"input_path": input_data, "input_img": raw_img, "boxes": []}
|
|
|
for i, obj in enumerate(det_res["boxes"]):
|
|
|
- rec_scores = rec_res["score"][i]
|
|
|
+ cls_scores = rec_res["score"][i]
|
|
|
labels = rec_res["label"][i]
|
|
|
single_img_res["boxes"].append(
|
|
|
{
|
|
|
"labels": labels,
|
|
|
- "rec_scores": rec_scores,
|
|
|
+ "cls_scores": cls_scores,
|
|
|
"det_score": obj["score"],
|
|
|
"coordinate": obj["coordinate"],
|
|
|
}
|