FlyingQianMM vor 4 Jahren
Ursprung
Commit
2217748628
2 geänderte Dateien mit 2 neuen und 2 gelöschten Zeilen
  1. 1 1
      README.md
  2. 1 1
      README_cn.md

+ 1 - 1
README.md

@@ -16,7 +16,7 @@
  ![QQGroup](https://img.shields.io/badge/QQ_Group-1045148026-52B6EF?style=social&logo=tencent-qq&logoColor=000&logoWidth=20)
 
 
-# PaddleX dygraph mode is ready! Static mode is set by default and dygraph graph code base is in [dygraph](https://github.com/PaddlePaddle/PaddleX/tree/develop/dygraph). If you want to use static mode, the version 1.3.10 can be installed by pip. The version 2.0.0rc0 corresponds to the dygraph mode.
+## PaddleX dygraph mode is ready! Static mode is set by default and dygraph graph code base is in [dygraph](https://github.com/PaddlePaddle/PaddleX/tree/develop/dygraph). If you want to use static mode, the version 1.3.10 can be installed by pip. The version 2.0.0rc0 corresponds to the dygraph mode.
 
 
 :hugs:  PaddleX integrated the abilities of **Image classification**, **Object detection**, **Semantic segmentation**, and **Instance segmentation** in the Paddle CV toolkits, and get through the whole-process development from **Data preparation** and **Model training and optimization** to **Multi-end deployment**. At the same time, PaddleX provides **Succinct APIs** and a **Graphical User Interface**. Developers can quickly complete the end-to-end process development of the Paddle in a form of **low-code**  without installing different libraries.

+ 1 - 1
README_cn.md

@@ -12,7 +12,7 @@
  ![QQGroup](https://img.shields.io/badge/QQ_Group-1045148026-52B6EF?style=social&logo=tencent-qq&logoColor=000&logoWidth=20)
 
 
-# PaddleX全面升级动态图,目前默认使用静态图版本,动态图版本位于[dygraph](https://github.com/PaddlePaddle/PaddleX/tree/develop/dygraph)中。pip安装1.3.10版本对应使用静态图版本,pip安装2.0.0rc0即使用动态图版本。
+## PaddleX全面升级动态图,目前默认使用静态图版本,动态图版本位于[dygraph](https://github.com/PaddlePaddle/PaddleX/tree/develop/dygraph)中。pip安装1.3.10版本对应使用静态图版本,pip安装2.0.0rc0即使用动态图版本。
 
 :hugs: PaddleX 集成飞桨智能视觉领域**图像分类**、**目标检测**、**语义分割**、**实例分割**任务能力,将深度学习开发全流程从**数据准备**、**模型训练与优化**到**多端部署**端到端打通,并提供**统一任务API接口**及**图形化开发界面Demo**。开发者无需分别安装不同套件,以**低代码**的形式即可快速完成飞桨全流程开发。