|
|
@@ -58,8 +58,8 @@ class Compose:
|
|
|
im (str/np.ndarray): 图像路径/图像np.ndarray数据。
|
|
|
im_info (dict): 存储与图像相关的信息,dict中的字段如下:
|
|
|
- im_id (np.ndarray): 图像序列号,形状为(1,)。
|
|
|
- - origin_shape (np.ndarray): 图像原始大小,形状为(2,),
|
|
|
- origin_shape[0]为高,origin_shape[1]为宽。
|
|
|
+ - image_shape (np.ndarray): 图像原始大小,形状为(2,),
|
|
|
+ image_shape[0]为高,image_shape[1]为宽。
|
|
|
- mixup (list): list为[im, im_info, label_info],分别对应
|
|
|
与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
|
|
|
注意,当前epoch若无需进行mixup,则无该字段。
|
|
|
@@ -93,9 +93,6 @@ class Compose:
|
|
|
# make default im_info with [h, w, 1]
|
|
|
im_info['im_resize_info'] = np.array(
|
|
|
[im.shape[0], im.shape[1], 1.], dtype=np.float32)
|
|
|
- # copy augment_shape from origin_shape
|
|
|
- im_info['augment_shape'] = np.array([im.shape[0],
|
|
|
- im.shape[1]]).astype('int32')
|
|
|
if not self.use_mixup:
|
|
|
if 'mixup' in im_info:
|
|
|
del im_info['mixup']
|
|
|
@@ -387,16 +384,13 @@ class RandomHorizontalFlip:
|
|
|
raise TypeError(
|
|
|
'Cannot do RandomHorizontalFlip! ' +
|
|
|
'Becasuse the im_info and label_info can not be None!')
|
|
|
- if 'augment_shape' not in im_info:
|
|
|
- raise TypeError('Cannot do RandomHorizontalFlip! ' + \
|
|
|
- 'Becasuse augment_shape is not in im_info!')
|
|
|
if 'gt_bbox' not in label_info:
|
|
|
raise TypeError('Cannot do RandomHorizontalFlip! ' + \
|
|
|
'Becasuse gt_bbox is not in label_info!')
|
|
|
- augment_shape = im_info['augment_shape']
|
|
|
+ image_shape = im_info['image_shape']
|
|
|
gt_bbox = label_info['gt_bbox']
|
|
|
- height = augment_shape[0]
|
|
|
- width = augment_shape[1]
|
|
|
+ height = image_shape[0]
|
|
|
+ width = image_shape[1]
|
|
|
|
|
|
if np.random.uniform(0, 1) < self.prob:
|
|
|
im = horizontal_flip(im)
|
|
|
@@ -567,7 +561,7 @@ class MixupImage:
|
|
|
(2)拼接原图像标注框和mixup图像标注框。
|
|
|
(3)拼接原图像标注框类别和mixup图像标注框类别。
|
|
|
(4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
|
|
|
- 3. 更新im_info中的augment_shape信息。
|
|
|
+ 3. 更新im_info中的image_shape信息。
|
|
|
|
|
|
Args:
|
|
|
alpha (float): 随机beta分布的下限。默认为1.5。
|
|
|
@@ -610,7 +604,7 @@ class MixupImage:
|
|
|
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
|
|
|
存储与标注框相关信息的字典。
|
|
|
其中,im_info更新字段为:
|
|
|
- - augment_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
|
|
|
+ - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
|
|
|
im_info删除的字段:
|
|
|
- mixup (list): 与当前字段进行mixup的图像相关信息。
|
|
|
label_info更新字段为:
|
|
|
@@ -674,8 +668,8 @@ class MixupImage:
|
|
|
label_info['gt_score'] = gt_score
|
|
|
label_info['gt_class'] = gt_class
|
|
|
label_info['is_crowd'] = is_crowd
|
|
|
- im_info['augment_shape'] = np.array([im.shape[0],
|
|
|
- im.shape[1]]).astype('int32')
|
|
|
+ im_info['image_shape'] = np.array([im.shape[0],
|
|
|
+ im.shape[1]]).astype('int32')
|
|
|
im_info.pop('mixup')
|
|
|
if label_info is None:
|
|
|
return (im, im_info)
|
|
|
@@ -721,7 +715,7 @@ class RandomExpand:
|
|
|
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
|
|
|
存储与标注框相关信息的字典。
|
|
|
其中,im_info更新字段为:
|
|
|
- - augment_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
|
|
|
+ - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
|
|
|
label_info更新字段为:
|
|
|
- gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
|
|
|
其中n代表真实标注框的个数。
|
|
|
@@ -734,9 +728,6 @@ class RandomExpand:
|
|
|
raise TypeError(
|
|
|
'Cannot do RandomExpand! ' +
|
|
|
'Becasuse the im_info and label_info can not be None!')
|
|
|
- if 'augment_shape' not in im_info:
|
|
|
- raise TypeError('Cannot do RandomExpand! ' + \
|
|
|
- 'Becasuse augment_shape is not in im_info!')
|
|
|
if 'gt_bbox' not in label_info or \
|
|
|
'gt_class' not in label_info:
|
|
|
raise TypeError('Cannot do RandomExpand! ' + \
|
|
|
@@ -744,9 +735,9 @@ class RandomExpand:
|
|
|
if np.random.uniform(0., 1.) < self.prob:
|
|
|
return (im, im_info, label_info)
|
|
|
|
|
|
- augment_shape = im_info['augment_shape']
|
|
|
- height = int(augment_shape[0])
|
|
|
- width = int(augment_shape[1])
|
|
|
+ image_shape = im_info['image_shape']
|
|
|
+ height = int(image_shape[0])
|
|
|
+ width = int(image_shape[1])
|
|
|
|
|
|
expand_ratio = np.random.uniform(1., self.ratio)
|
|
|
h = int(height * expand_ratio)
|
|
|
@@ -759,7 +750,7 @@ class RandomExpand:
|
|
|
canvas *= np.array(self.fill_value, dtype=np.float32)
|
|
|
canvas[y:y + height, x:x + width, :] = im
|
|
|
|
|
|
- im_info['augment_shape'] = np.array([h, w]).astype('int32')
|
|
|
+ im_info['image_shape'] = np.array([h, w]).astype('int32')
|
|
|
if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
|
|
|
label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
|
|
|
if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
|
|
|
@@ -815,12 +806,14 @@ class RandomCrop:
|
|
|
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
|
|
|
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
|
|
|
存储与标注框相关信息的字典。
|
|
|
- 其中,label_info更新字段为:
|
|
|
- - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
|
|
|
+ 其中,im_info更新字段为:
|
|
|
+ - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
|
|
|
+ label_info更新字段为:
|
|
|
+ - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
|
|
|
其中n代表真实标注框的个数。
|
|
|
- - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
|
|
|
+ - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
|
|
|
其中n代表真实标注框的个数。
|
|
|
- - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
|
|
|
+ - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
|
|
|
其中n代表真实标注框的个数。
|
|
|
|
|
|
Raises:
|
|
|
@@ -830,9 +823,6 @@ class RandomCrop:
|
|
|
raise TypeError(
|
|
|
'Cannot do RandomCrop! ' +
|
|
|
'Becasuse the im_info and label_info can not be None!')
|
|
|
- if 'augment_shape' not in im_info:
|
|
|
- raise TypeError('Cannot do RandomCrop! ' + \
|
|
|
- 'Becasuse augment_shape is not in im_info!')
|
|
|
if 'gt_bbox' not in label_info or \
|
|
|
'gt_class' not in label_info:
|
|
|
raise TypeError('Cannot do RandomCrop! ' + \
|
|
|
@@ -841,9 +831,9 @@ class RandomCrop:
|
|
|
if len(label_info['gt_bbox']) == 0:
|
|
|
return (im, im_info, label_info)
|
|
|
|
|
|
- augment_shape = im_info['augment_shape']
|
|
|
- w = augment_shape[1]
|
|
|
- h = augment_shape[0]
|
|
|
+ image_shape = im_info['image_shape']
|
|
|
+ w = image_shape[1]
|
|
|
+ h = image_shape[0]
|
|
|
gt_bbox = label_info['gt_bbox']
|
|
|
thresholds = list(self.thresholds)
|
|
|
if self.allow_no_crop:
|
|
|
@@ -902,7 +892,7 @@ class RandomCrop:
|
|
|
label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
|
|
|
label_info['gt_class'] = np.take(
|
|
|
label_info['gt_class'], valid_ids, axis=0)
|
|
|
- im_info['augment_shape'] = np.array(
|
|
|
+ im_info['image_shape'] = np.array(
|
|
|
[crop_box[3] - crop_box[1],
|
|
|
crop_box[2] - crop_box[0]]).astype('int32')
|
|
|
if 'gt_score' in label_info:
|
|
|
@@ -973,7 +963,7 @@ class ArrangeFasterRCNN:
|
|
|
im_resize_info = im_info['im_resize_info']
|
|
|
im_id = im_info['im_id']
|
|
|
im_shape = np.array(
|
|
|
- (im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
|
|
|
+ (im_info['image_shape'][0], im_info['image_shape'][1], 1),
|
|
|
dtype=np.float32)
|
|
|
gt_bbox = label_info['gt_bbox']
|
|
|
gt_class = label_info['gt_class']
|
|
|
@@ -986,7 +976,7 @@ class ArrangeFasterRCNN:
|
|
|
'Becasuse the im_info can not be None!')
|
|
|
im_resize_info = im_info['im_resize_info']
|
|
|
im_shape = np.array(
|
|
|
- (im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
|
|
|
+ (im_info['image_shape'][0], im_info['image_shape'][1], 1),
|
|
|
dtype=np.float32)
|
|
|
outputs = (im, im_resize_info, im_shape)
|
|
|
return outputs
|
|
|
@@ -1066,7 +1056,7 @@ class ArrangeMaskRCNN:
|
|
|
'Becasuse the im_info can not be None!')
|
|
|
im_resize_info = im_info['im_resize_info']
|
|
|
im_shape = np.array(
|
|
|
- (im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
|
|
|
+ (im_info['image_shape'][0], im_info['image_shape'][1], 1),
|
|
|
dtype=np.float32)
|
|
|
if self.mode == 'eval':
|
|
|
im_id = im_info['im_id']
|
|
|
@@ -1117,7 +1107,7 @@ class ArrangeYOLOv3:
|
|
|
raise TypeError(
|
|
|
'Cannot do ArrangeYolov3! ' +
|
|
|
'Becasuse the im_info and label_info can not be None!')
|
|
|
- im_shape = im_info['augment_shape']
|
|
|
+ im_shape = im_info['image_shape']
|
|
|
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
|
|
|
raise ValueError("gt num mismatch: bbox and class.")
|
|
|
if len(label_info['gt_bbox']) != len(label_info['gt_score']):
|
|
|
@@ -1141,7 +1131,7 @@ class ArrangeYOLOv3:
|
|
|
raise TypeError(
|
|
|
'Cannot do ArrangeYolov3! ' +
|
|
|
'Becasuse the im_info and label_info can not be None!')
|
|
|
- im_shape = im_info['augment_shape']
|
|
|
+ im_shape = im_info['image_shape']
|
|
|
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
|
|
|
raise ValueError("gt num mismatch: bbox and class.")
|
|
|
im_id = im_info['im_id']
|
|
|
@@ -1160,6 +1150,6 @@ class ArrangeYOLOv3:
|
|
|
if im_info is None:
|
|
|
raise TypeError('Cannot do ArrangeYolov3! ' +
|
|
|
'Becasuse the im_info can not be None!')
|
|
|
- im_shape = im_info['augment_shape']
|
|
|
+ im_shape = im_info['image_shape']
|
|
|
outputs = (im, im_shape)
|
|
|
return outputs
|