|
|
@@ -14,10 +14,10 @@
|
|
|
|
|
|
方式一: 使用paddlex.load_model
|
|
|
|
|
|
-```
|
|
|
+```python
|
|
|
import paddlex as pdx
|
|
|
|
|
|
-model = pdx.load_model(output/mobilenetv3_small/best_model)
|
|
|
+model = pdx.load_model("output/mobilenetv3_small/best_model")
|
|
|
|
|
|
model.train(
|
|
|
num_epochs=10,
|
|
|
@@ -32,7 +32,7 @@ model.train(
|
|
|
|
|
|
方式二: 指定pretrain_weights
|
|
|
|
|
|
-```
|
|
|
+```python
|
|
|
import paddlex as pdx
|
|
|
|
|
|
model = pdx.cls.MobileNetV3_small(num_classes=num_classes)
|
|
|
@@ -55,7 +55,7 @@ model.train(
|
|
|
|
|
|
我们以图像分类模型`MobileNetV3_small`为例,假设我们之前训练并保存好了模型(训练代码可参考[示例代码](../../../tutorials/train/image_classification/mobilenetv3_small.py)),在这次想加载之前训好的参数(之前训好的模型假设位于`output/mobilenetv3_small/best_model`)重新评估模型在验证集上的精度,示例代码如下:
|
|
|
|
|
|
-```
|
|
|
+```python
|
|
|
import paddlex as pdx
|
|
|
from paddlex import transforms as T
|
|
|
|
|
|
@@ -71,7 +71,7 @@ eval_dataset = pdx.datasets.ImageNet(
|
|
|
transforms=eval_transforms)
|
|
|
|
|
|
|
|
|
-model = pdx.load_model(output/mobilenetv3_small/best_model)
|
|
|
+model = pdx.load_model("output/mobilenetv3_small/best_model")
|
|
|
|
|
|
res = model.evaluate(eval_dataset, batch_size=2)
|
|
|
print(res)
|
|
|
@@ -82,7 +82,7 @@ print(res)
|
|
|
## <h2 id="3">加载模型用于剪裁</h2>
|
|
|
|
|
|
模型剪裁时,先使用`paddlex.load_moel`加载模型,而后使用`analyze_sensitivity`、`prune`和`train`三个API完成剪裁:
|
|
|
-```
|
|
|
+```python
|
|
|
model = pdx.load_model('output/mobilenet_v2/best_model')
|
|
|
|
|
|
model.analyze_sensitivity(
|
|
|
@@ -107,7 +107,7 @@ model.train(
|
|
|
|
|
|
模型量化时,先使用`paddlex.load_moel`加载模型,而后使用`quant_aware_train`完成量化:
|
|
|
|
|
|
-```
|
|
|
+```python
|
|
|
model = pdx.load_model('output/mobilenet_v2/best_model')
|
|
|
|
|
|
model.quant_aware_train(
|