|
|
@@ -0,0 +1,44 @@
|
|
|
+import os
|
|
|
+os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
+
|
|
|
+from paddlex.cls import transforms
|
|
|
+import paddlex as pdx
|
|
|
+
|
|
|
+veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
|
|
|
+pdx.utils.download_and_decompress(veg_dataset, path='./')
|
|
|
+
|
|
|
+train_transforms = transforms.Compose([
|
|
|
+ transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(),
|
|
|
+ transforms.Normalize()
|
|
|
+])
|
|
|
+eval_transforms = transforms.Compose([
|
|
|
+ transforms.ResizeByShort(short_size=256),
|
|
|
+ transforms.CenterCrop(crop_size=224), transforms.Normalize()
|
|
|
+])
|
|
|
+
|
|
|
+train_dataset = pdx.datasets.ImageNet(
|
|
|
+ data_dir='vegetables_cls',
|
|
|
+ file_list='vegetables_cls/train_list.txt',
|
|
|
+ label_list='vegetables_cls/labels.txt',
|
|
|
+ transforms=train_transforms,
|
|
|
+ shuffle=True)
|
|
|
+eval_dataset = pdx.datasets.ImageNet(
|
|
|
+ data_dir='vegetables_cls',
|
|
|
+ file_list='vegetables_cls/val_list.txt',
|
|
|
+ label_list='vegetables_cls/labels.txt',
|
|
|
+ transforms=eval_transforms)
|
|
|
+
|
|
|
+model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels))
|
|
|
+
|
|
|
+model.train(
|
|
|
+ num_epochs=10,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=32,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ lr_decay_epochs=[4, 6, 8],
|
|
|
+ learning_rate=0.025,
|
|
|
+ pretrain_weights='output/mobilenetv2/best_model',
|
|
|
+ save_dir='output/mobilenetv2_prune',
|
|
|
+ sensitivities_file='./mobilenetv2.sensi.data',
|
|
|
+ eval_metric_loss=0.05,
|
|
|
+ use_vdl=True)
|