|
|
@@ -0,0 +1,144 @@
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+from typing import Any, Union, Dict, List, Tuple
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+from ....utils.func_register import FuncRegister
|
|
|
+from ....modules.anomaly_detection.model_list import MODELS
|
|
|
+from ...common.batch_sampler import ImageBatchSampler
|
|
|
+from ...common.reader import ReadImage
|
|
|
+from ..common import (
|
|
|
+ Resize,
|
|
|
+ ResizeByShort,
|
|
|
+ Normalize,
|
|
|
+ ToCHWImage,
|
|
|
+ ToBatch,
|
|
|
+ StaticInfer,
|
|
|
+)
|
|
|
+from .processors import MapToMask
|
|
|
+from ..base import BasicPredictor
|
|
|
+from .result import UadResult
|
|
|
+
|
|
|
+
|
|
|
+class UadPredictor(BasicPredictor):
|
|
|
+ """UadPredictor that inherits from BasicPredictor."""
|
|
|
+
|
|
|
+ entities = MODELS
|
|
|
+
|
|
|
+ _FUNC_MAP = {}
|
|
|
+ register = FuncRegister(_FUNC_MAP)
|
|
|
+
|
|
|
+ def __init__(self, *args: List, **kwargs: Dict) -> None:
|
|
|
+ """Initializes UadPredictor.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ *args: Arbitrary positional arguments passed to the superclass.
|
|
|
+ **kwargs: Arbitrary keyword arguments passed to the superclass.
|
|
|
+ """
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+ self.preprocessors, self.infer, self.postprocessors = self._build()
|
|
|
+
|
|
|
+ def _build_batch_sampler(self) -> ImageBatchSampler:
|
|
|
+ """Builds and returns an ImageBatchSampler instance.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ ImageBatchSampler: An instance of ImageBatchSampler.
|
|
|
+ """
|
|
|
+ return ImageBatchSampler()
|
|
|
+
|
|
|
+ def _get_result_class(self) -> type:
|
|
|
+ """Returns the result class, UadResult.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ type: The UadResult class.
|
|
|
+ """
|
|
|
+ return UadResult
|
|
|
+
|
|
|
+ def _build(self) -> Tuple:
|
|
|
+ """Build the preprocessors, inference engine, and postprocessors based on the configuration.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
|
|
|
+ """
|
|
|
+ preprocessors = {"Read": ReadImage(format="RGB")}
|
|
|
+ preprocessors["ToCHW"] = ToCHWImage()
|
|
|
+ for cfg in self.config["Deploy"]["transforms"]:
|
|
|
+ tf_key = cfg.pop("type")
|
|
|
+ func = self._FUNC_MAP[tf_key]
|
|
|
+ args = cfg
|
|
|
+ name, op = func(self, **args) if args else func(self)
|
|
|
+ preprocessors[name] = op
|
|
|
+ preprocessors["ToBatch"] = ToBatch()
|
|
|
+
|
|
|
+ infer = StaticInfer(
|
|
|
+ model_dir=self.model_dir,
|
|
|
+ model_prefix=self.MODEL_FILE_PREFIX,
|
|
|
+ option=self.pp_option,
|
|
|
+ )
|
|
|
+ postprocessors = {"Map_to_mask": MapToMask()}
|
|
|
+ return preprocessors, infer, postprocessors
|
|
|
+
|
|
|
+ def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
|
|
|
+ """
|
|
|
+ Process a batch of data through the preprocessing, inference, and postprocessing.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict: A dictionary containing the input path, raw image, and predicted segmentation maps for every instance of the batch. Keys include 'input_path', 'input_img', and 'pred'.
|
|
|
+ """
|
|
|
+ batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data)
|
|
|
+ batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs)
|
|
|
+ batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
|
|
|
+ batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
|
|
|
+ x = self.preprocessors["ToBatch"](imgs=batch_imgs)
|
|
|
+ batch_preds = self.infer(x=x)
|
|
|
+ batch_preds = self.postprocessors["Map_to_mask"](preds=batch_preds)
|
|
|
+ if len(batch_data) > 1:
|
|
|
+ batch_preds = np.split(batch_preds[0], len(batch_data), axis=0)
|
|
|
+
|
|
|
+ return {
|
|
|
+ "input_path": batch_data,
|
|
|
+ "input_img": batch_raw_imgs,
|
|
|
+ "pred": batch_preds,
|
|
|
+ }
|
|
|
+
|
|
|
+ @register("Resize")
|
|
|
+ def build_resize(
|
|
|
+ self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
|
|
|
+ ):
|
|
|
+ assert target_size
|
|
|
+ op = Resize(
|
|
|
+ target_size=target_size,
|
|
|
+ keep_ratio=keep_ratio,
|
|
|
+ size_divisor=size_divisor,
|
|
|
+ interp=interp,
|
|
|
+ )
|
|
|
+ return "Resize", op
|
|
|
+
|
|
|
+ @register("Normalize")
|
|
|
+ def build_normalize(
|
|
|
+ self,
|
|
|
+ mean=0.5,
|
|
|
+ std=0.5,
|
|
|
+ ):
|
|
|
+ op = Normalize(mean=mean, std=std)
|
|
|
+ return "Normalize", op
|
|
|
+
|
|
|
+ @register("Map_to_mask")
|
|
|
+ def map_to_mask(self, mask_map):
|
|
|
+ op = MapToMask()
|
|
|
+ return "Map_to_mask", op
|