|
|
@@ -0,0 +1,604 @@
|
|
|
+"""PDF转图像后通过API统一处理"""
|
|
|
+import json
|
|
|
+import time
|
|
|
+import os
|
|
|
+import traceback
|
|
|
+import argparse
|
|
|
+import sys
|
|
|
+import warnings
|
|
|
+import base64
|
|
|
+from pathlib import Path
|
|
|
+from typing import List, Dict, Any, Union
|
|
|
+import requests
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+from dotenv import load_dotenv
|
|
|
+load_dotenv(override=True)
|
|
|
+
|
|
|
+from utils import (
|
|
|
+ get_image_files_from_dir,
|
|
|
+ get_image_files_from_list,
|
|
|
+ get_image_files_from_csv,
|
|
|
+ collect_pid_files,
|
|
|
+ load_images_from_pdf,
|
|
|
+ normalize_financial_numbers,
|
|
|
+ normalize_markdown_table
|
|
|
+)
|
|
|
+
|
|
|
+def convert_pdf_to_images(pdf_file: str, output_dir: str | None = None, dpi: int = 200) -> List[str]:
|
|
|
+ """
|
|
|
+ 将PDF转换为图像文件
|
|
|
+
|
|
|
+ Args:
|
|
|
+ pdf_file: PDF文件路径
|
|
|
+ output_dir: 输出目录
|
|
|
+ dpi: 图像分辨率
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 生成的图像文件路径列表
|
|
|
+ """
|
|
|
+ pdf_path = Path(pdf_file)
|
|
|
+ if not pdf_path.exists() or pdf_path.suffix.lower() != '.pdf':
|
|
|
+ print(f"❌ Invalid PDF file: {pdf_path}")
|
|
|
+ return []
|
|
|
+
|
|
|
+ # 如果没有指定输出目录,使用PDF同名目录
|
|
|
+ if output_dir is None:
|
|
|
+ output_path = pdf_path.parent / f"{pdf_path.stem}"
|
|
|
+ else:
|
|
|
+ output_path = Path(output_dir) / f"{pdf_path.stem}"
|
|
|
+ output_path = output_path.resolve()
|
|
|
+ output_path.mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 使用doc_utils中的函数加载PDF图像
|
|
|
+ images = load_images_from_pdf(str(pdf_path), dpi=dpi)
|
|
|
+
|
|
|
+ image_paths = []
|
|
|
+ for i, image in enumerate(images):
|
|
|
+ # 生成图像文件名
|
|
|
+ image_filename = f"{pdf_path.stem}_page_{i+1:03d}.png"
|
|
|
+ image_path = output_path / image_filename
|
|
|
+
|
|
|
+ # 保存图像
|
|
|
+ image.save(str(image_path))
|
|
|
+ image_paths.append(str(image_path))
|
|
|
+
|
|
|
+ print(f"✅ Converted {len(images)} pages from {pdf_path.name} to images")
|
|
|
+ return image_paths
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"❌ Error converting PDF {pdf_path}: {e}")
|
|
|
+ traceback.print_exc()
|
|
|
+ return []
|
|
|
+
|
|
|
+def get_input_files(args) -> List[str]:
|
|
|
+ """
|
|
|
+ 获取输入文件列表,统一处理PDF和图像文件
|
|
|
+
|
|
|
+ Args:
|
|
|
+ args: 命令行参数
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 处理后的图像文件路径列表
|
|
|
+ """
|
|
|
+ input_files = []
|
|
|
+
|
|
|
+ # 获取原始输入文件
|
|
|
+ if args.input_csv:
|
|
|
+ raw_files = get_image_files_from_csv(args.input_csv, "fail")
|
|
|
+ elif args.input_file_list:
|
|
|
+ raw_files = get_image_files_from_list(args.input_file_list)
|
|
|
+ elif args.input_file:
|
|
|
+ raw_files = [Path(args.input_file).resolve()]
|
|
|
+ else:
|
|
|
+ input_dir = Path(args.input_dir).resolve()
|
|
|
+ if not input_dir.exists():
|
|
|
+ print(f"❌ Input directory does not exist: {input_dir}")
|
|
|
+ return []
|
|
|
+
|
|
|
+ # 获取所有支持的文件(图像和PDF)
|
|
|
+ image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif']
|
|
|
+ pdf_extensions = ['.pdf']
|
|
|
+
|
|
|
+ raw_files = []
|
|
|
+ for ext in image_extensions + pdf_extensions:
|
|
|
+ raw_files.extend(list(input_dir.glob(f"*{ext}")))
|
|
|
+ raw_files.extend(list(input_dir.glob(f"*{ext.upper()}")))
|
|
|
+
|
|
|
+ raw_files = [str(f) for f in raw_files]
|
|
|
+
|
|
|
+ # 分别处理PDF和图像文件
|
|
|
+ pdf_count = 0
|
|
|
+ image_count = 0
|
|
|
+
|
|
|
+ for file_path in raw_files:
|
|
|
+ file_path = Path(file_path)
|
|
|
+
|
|
|
+ if file_path.suffix.lower() == '.pdf':
|
|
|
+ # 转换PDF为图像
|
|
|
+ print(f"📄 Processing PDF: {file_path.name}")
|
|
|
+ pdf_images = convert_pdf_to_images(
|
|
|
+ str(file_path),
|
|
|
+ args.output_dir,
|
|
|
+ dpi=args.pdf_dpi
|
|
|
+ )
|
|
|
+ input_files.extend(pdf_images)
|
|
|
+ pdf_count += 1
|
|
|
+ else:
|
|
|
+ # 直接添加图像文件
|
|
|
+ if file_path.exists():
|
|
|
+ input_files.append(str(file_path))
|
|
|
+ image_count += 1
|
|
|
+
|
|
|
+ print(f"📊 Input summary:")
|
|
|
+ print(f" PDF files processed: {pdf_count}")
|
|
|
+ print(f" Image files found: {image_count}")
|
|
|
+ print(f" Total image files to process: {len(input_files)}")
|
|
|
+
|
|
|
+ return input_files
|
|
|
+
|
|
|
+def convert_api_result_to_json(api_result: Dict[str, Any],
|
|
|
+ input_image_path: str,
|
|
|
+ output_dir: str,
|
|
|
+ filename: str,
|
|
|
+ normalize_numbers: bool = True) -> tuple[str, Dict[str, Any]]:
|
|
|
+ """
|
|
|
+ 将API返回结果转换为标准JSON格式,并支持数字标准化
|
|
|
+ """
|
|
|
+ # 获取主要数据
|
|
|
+ layout_parsing_results = api_result.get('layoutParsingResults', [])
|
|
|
+
|
|
|
+ if not layout_parsing_results:
|
|
|
+ print("⚠️ Warning: No layoutParsingResults found in API response")
|
|
|
+ return {}
|
|
|
+
|
|
|
+ # 取第一个结果(通常只有一个)
|
|
|
+ main_result = layout_parsing_results[0]
|
|
|
+ pruned_result = main_result.get('prunedResult', {})
|
|
|
+
|
|
|
+ # 构造标准格式的JSON
|
|
|
+ converted_json = {
|
|
|
+ "input_path": input_image_path,
|
|
|
+ "page_index": None,
|
|
|
+ "model_settings": pruned_result.get('model_settings', {}),
|
|
|
+ "parsing_res_list": pruned_result.get('parsing_res_list', []),
|
|
|
+ "doc_preprocessor_res": {
|
|
|
+ "input_path": None,
|
|
|
+ "page_index": None,
|
|
|
+ "model_settings": pruned_result.get('doc_preprocessor_res', {}).get('model_settings', {}),
|
|
|
+ "angle": pruned_result.get('doc_preprocessor_res', {}).get('angle', 0)
|
|
|
+ },
|
|
|
+ "layout_det_res": {
|
|
|
+ "input_path": None,
|
|
|
+ "page_index": None,
|
|
|
+ "boxes": pruned_result.get('layout_det_res', {}).get('boxes', [])
|
|
|
+ },
|
|
|
+ "overall_ocr_res": {
|
|
|
+ "input_path": None,
|
|
|
+ "page_index": None,
|
|
|
+ "model_settings": pruned_result.get('overall_ocr_res', {}).get('model_settings', {}),
|
|
|
+ "dt_polys": pruned_result.get('overall_ocr_res', {}).get('dt_polys', []),
|
|
|
+ "text_det_params": pruned_result.get('overall_ocr_res', {}).get('text_det_params', {}),
|
|
|
+ "text_type": pruned_result.get('overall_ocr_res', {}).get('text_type', 'general'),
|
|
|
+ "textline_orientation_angles": pruned_result.get('overall_ocr_res', {}).get('textline_orientation_angles', []),
|
|
|
+ "text_rec_score_thresh": pruned_result.get('overall_ocr_res', {}).get('text_rec_score_thresh', 0.0),
|
|
|
+ "return_word_box": pruned_result.get('overall_ocr_res', {}).get('return_word_box', False),
|
|
|
+ "rec_texts": pruned_result.get('overall_ocr_res', {}).get('rec_texts', []),
|
|
|
+ "rec_scores": pruned_result.get('overall_ocr_res', {}).get('rec_scores', []),
|
|
|
+ "rec_polys": pruned_result.get('overall_ocr_res', {}).get('rec_polys', []),
|
|
|
+ "rec_boxes": pruned_result.get('overall_ocr_res', {}).get('rec_boxes', [])
|
|
|
+ },
|
|
|
+ "table_res_list": pruned_result.get('table_res_list', [])
|
|
|
+ }
|
|
|
+
|
|
|
+ # 数字标准化处理
|
|
|
+ original_json = converted_json.copy()
|
|
|
+ changes_count = 0
|
|
|
+
|
|
|
+ if normalize_numbers:
|
|
|
+ # 1. 标准化 parsing_res_list 中的文本内容
|
|
|
+ for item in converted_json.get('parsing_res_list', []):
|
|
|
+ if 'block_content' in item:
|
|
|
+ original_content = item['block_content']
|
|
|
+
|
|
|
+ # 根据block_label类型选择标准化方法
|
|
|
+ if item.get('block_label') == 'table':
|
|
|
+ normalized_content = normalize_markdown_table(original_content)
|
|
|
+ # else:
|
|
|
+ # normalized_content = normalize_financial_numbers(original_content)
|
|
|
+
|
|
|
+ if original_content != normalized_content:
|
|
|
+ item['block_content'] = normalized_content
|
|
|
+ changes_count += len([1 for o, n in zip(original_content, normalized_content) if o != n])
|
|
|
+
|
|
|
+ # 2. 标准化 table_res_list 中的HTML表格
|
|
|
+ for table_item in converted_json.get('table_res_list', []):
|
|
|
+ if 'pred_html' in table_item:
|
|
|
+ original_html = table_item['pred_html']
|
|
|
+ normalized_html = normalize_markdown_table(original_html)
|
|
|
+
|
|
|
+ if original_html != normalized_html:
|
|
|
+ table_item['pred_html'] = normalized_html
|
|
|
+ changes_count += len([1 for o, n in zip(original_html, normalized_html) if o != n])
|
|
|
+
|
|
|
+ # 3. 标准化 overall_ocr_res 中的识别文本
|
|
|
+ # ocr_res = converted_json.get('overall_ocr_res', {})
|
|
|
+ # if 'rec_texts' in ocr_res:
|
|
|
+ # original_texts = ocr_res['rec_texts'][:]
|
|
|
+ # normalized_texts = []
|
|
|
+
|
|
|
+ # for text in original_texts:
|
|
|
+ # normalized_text = normalize_financial_numbers(text)
|
|
|
+ # normalized_texts.append(normalized_text)
|
|
|
+ # if text != normalized_text:
|
|
|
+ # changes_count += len([1 for o, n in zip(text, normalized_text) if o != n])
|
|
|
+
|
|
|
+ # ocr_res['rec_texts'] = normalized_texts
|
|
|
+
|
|
|
+ # 添加标准化处理信息
|
|
|
+ converted_json['processing_info'] = {
|
|
|
+ "normalize_numbers": normalize_numbers,
|
|
|
+ "changes_applied": changes_count > 0,
|
|
|
+ "character_changes_count": changes_count
|
|
|
+ }
|
|
|
+
|
|
|
+ if changes_count > 0:
|
|
|
+ print(f"🔧 已标准化 {changes_count} 个字符(全角→半角)")
|
|
|
+ else:
|
|
|
+ converted_json['processing_info'] = {
|
|
|
+ "normalize_numbers": False,
|
|
|
+ "changes_applied": False,
|
|
|
+ "character_changes_count": 0
|
|
|
+ }
|
|
|
+
|
|
|
+ # 保存JSON文件
|
|
|
+ output_path = Path(output_dir).resolve() / f"{filename}.json"
|
|
|
+ output_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ with open(output_path, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(converted_json, f, ensure_ascii=False, indent=2)
|
|
|
+
|
|
|
+ # 如果启用了标准化且有变化,保存原始版本用于对比
|
|
|
+ if normalize_numbers and changes_count > 0:
|
|
|
+ original_output_path = output_path.parent / f"{output_path.stem}_original.json"
|
|
|
+ with open(original_output_path, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(original_json, f, ensure_ascii=False, indent=2)
|
|
|
+
|
|
|
+ return str(output_path), converted_json
|
|
|
+
|
|
|
+def save_markdown_content(api_result: Dict[str, Any], output_dir: str,
|
|
|
+ filename: str, normalize_numbers: bool = True) -> str:
|
|
|
+ """
|
|
|
+ 保存Markdown内容,支持数字标准化
|
|
|
+ """
|
|
|
+ layout_parsing_results = api_result.get('layoutParsingResults', [])
|
|
|
+ if not layout_parsing_results:
|
|
|
+ return ""
|
|
|
+
|
|
|
+ main_result = layout_parsing_results[0]
|
|
|
+ markdown_data = main_result.get('markdown', {})
|
|
|
+
|
|
|
+ output_path = Path(output_dir).resolve()
|
|
|
+ output_path.mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ # 保存Markdown文本
|
|
|
+ markdown_text = markdown_data.get('text', '')
|
|
|
+
|
|
|
+ # 数字标准化处理
|
|
|
+ if normalize_numbers and markdown_text:
|
|
|
+ original_markdown_text = markdown_text
|
|
|
+ markdown_text = normalize_markdown_table(markdown_text)
|
|
|
+
|
|
|
+ changes_count = len([1 for o, n in zip(original_markdown_text, markdown_text) if o != n])
|
|
|
+ if changes_count > 0:
|
|
|
+ print(f"🔧 Markdown中已标准化 {changes_count} 个字符(全角→半角)")
|
|
|
+
|
|
|
+ md_file_path = output_path / f"{filename}.md"
|
|
|
+ with open(md_file_path, 'w', encoding='utf-8') as f:
|
|
|
+ f.write(markdown_text)
|
|
|
+
|
|
|
+ # 如果启用了标准化且有变化,保存原始版本用于对比
|
|
|
+ if normalize_numbers and changes_count > 0:
|
|
|
+ original_output_path = output_path.parent / f"{output_path.stem}_original.json"
|
|
|
+ with open(original_output_path, 'w', encoding='utf-8') as f:
|
|
|
+ f.write(original_markdown_text)
|
|
|
+
|
|
|
+ return str(md_file_path)
|
|
|
+
|
|
|
+def call_api_for_image(image_path: str, api_url: str, timeout: int = 300) -> Dict[str, Any]:
|
|
|
+ """
|
|
|
+ 为单个图像调用API
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_path: 图像文件路径
|
|
|
+ api_url: API URL
|
|
|
+ timeout: 超时时间(秒)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ API返回结果
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ # 对本地图像进行Base64编码
|
|
|
+ with open(image_path, "rb") as file:
|
|
|
+ image_bytes = file.read()
|
|
|
+ image_data = base64.b64encode(image_bytes).decode("ascii")
|
|
|
+
|
|
|
+ payload = {
|
|
|
+ "file": image_data,
|
|
|
+ "fileType": 1,
|
|
|
+ }
|
|
|
+
|
|
|
+ # 调用API
|
|
|
+ response = requests.post(api_url, json=payload, timeout=timeout)
|
|
|
+ response.raise_for_status()
|
|
|
+
|
|
|
+ return response.json()["result"]
|
|
|
+
|
|
|
+ except requests.exceptions.Timeout:
|
|
|
+ raise Exception(f"API调用超时 ({timeout}秒)")
|
|
|
+ except requests.exceptions.RequestException as e:
|
|
|
+ raise Exception(f"API调用失败: {e}")
|
|
|
+ except KeyError:
|
|
|
+ raise Exception("API返回格式错误,缺少'result'字段")
|
|
|
+ except Exception as e:
|
|
|
+ raise Exception(f"处理图像时发生错误: {e}")
|
|
|
+
|
|
|
+def process_images_via_api(image_paths: List[str],
|
|
|
+ api_url: str,
|
|
|
+ output_dir: str = "./output",
|
|
|
+ normalize_numbers: bool = True,
|
|
|
+ timeout: int = 300) -> List[Dict[str, Any]]:
|
|
|
+ """
|
|
|
+ 通过API统一处理图像文件
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_paths: 图像路径列表
|
|
|
+ api_url: API URL
|
|
|
+ output_dir: 输出目录
|
|
|
+ normalize_numbers: 是否标准化数字格式
|
|
|
+ timeout: API调用超时时间
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 处理结果列表
|
|
|
+ """
|
|
|
+ # 创建输出目录
|
|
|
+ output_path = Path(output_dir)
|
|
|
+ output_path.mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ print(f"🚀 Using API: {api_url}")
|
|
|
+ print(f"🔧 数字标准化: {'启用' if normalize_numbers else '禁用'}")
|
|
|
+
|
|
|
+ all_results = []
|
|
|
+ total_images = len(image_paths)
|
|
|
+
|
|
|
+ print(f"Processing {total_images} images via API")
|
|
|
+
|
|
|
+ # 使用tqdm显示进度
|
|
|
+ with tqdm(total=total_images, desc="Processing images", unit="img",
|
|
|
+ bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') as pbar:
|
|
|
+
|
|
|
+ # 逐个处理图像
|
|
|
+ for img_path in image_paths:
|
|
|
+ start_time = time.time()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 调用API处理图像
|
|
|
+ api_result = call_api_for_image(img_path, api_url, timeout)
|
|
|
+ processing_time = time.time() - start_time
|
|
|
+
|
|
|
+ # 处理API返回结果
|
|
|
+ input_path = Path(img_path)
|
|
|
+
|
|
|
+ # 生成输出文件名
|
|
|
+ output_filename = input_path.stem
|
|
|
+
|
|
|
+ # 转换并保存标准JSON格式
|
|
|
+ json_output_path, converted_json = convert_api_result_to_json(
|
|
|
+ api_result,
|
|
|
+ str(input_path),
|
|
|
+ output_dir,
|
|
|
+ output_filename,
|
|
|
+ normalize_numbers=normalize_numbers
|
|
|
+ )
|
|
|
+
|
|
|
+ # 保存Markdown内容
|
|
|
+ md_output_path = save_markdown_content(
|
|
|
+ api_result,
|
|
|
+ output_dir,
|
|
|
+ output_filename,
|
|
|
+ normalize_numbers=normalize_numbers
|
|
|
+ )
|
|
|
+
|
|
|
+ # 记录处理结果
|
|
|
+ all_results.append({
|
|
|
+ "image_path": str(input_path),
|
|
|
+ "processing_time": processing_time,
|
|
|
+ "success": True,
|
|
|
+ "api_url": api_url,
|
|
|
+ "output_json": json_output_path,
|
|
|
+ "output_md": md_output_path,
|
|
|
+ "is_pdf_page": "_page_" in input_path.name, # 标记是否为PDF页面
|
|
|
+ "processing_info": converted_json.get('processing_info', {})
|
|
|
+ })
|
|
|
+
|
|
|
+ # 更新进度条
|
|
|
+ success_count = sum(1 for r in all_results if r.get('success', False))
|
|
|
+
|
|
|
+ pbar.update(1)
|
|
|
+ pbar.set_postfix({
|
|
|
+ 'time': f"{processing_time:.2f}s",
|
|
|
+ 'success': f"{success_count}/{len(all_results)}",
|
|
|
+ 'rate': f"{success_count/len(all_results)*100:.1f}%"
|
|
|
+ })
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Error processing {Path(img_path).name}: {e}", file=sys.stderr)
|
|
|
+
|
|
|
+ # 添加错误结果
|
|
|
+ all_results.append({
|
|
|
+ "image_path": str(img_path),
|
|
|
+ "processing_time": 0,
|
|
|
+ "success": False,
|
|
|
+ "api_url": api_url,
|
|
|
+ "error": str(e),
|
|
|
+ "is_pdf_page": "_page_" in Path(img_path).name
|
|
|
+ })
|
|
|
+ pbar.update(1)
|
|
|
+
|
|
|
+ return all_results
|
|
|
+
|
|
|
+def main():
|
|
|
+ """主函数"""
|
|
|
+ parser = argparse.ArgumentParser(description="PaddleX PP-StructureV3 API Client - Unified PDF/Image Processor")
|
|
|
+
|
|
|
+ # 参数定义
|
|
|
+ input_group = parser.add_mutually_exclusive_group(required=True)
|
|
|
+ input_group.add_argument("--input_file", type=str, help="Input file (supports both PDF and image file)")
|
|
|
+ input_group.add_argument("--input_dir", type=str, help="Input directory (supports both PDF and image files)")
|
|
|
+ input_group.add_argument("--input_file_list", type=str, help="Input file list (one file per line)")
|
|
|
+ input_group.add_argument("--input_csv", type=str, help="Input CSV file with image_path and status columns")
|
|
|
+
|
|
|
+ parser.add_argument("--output_dir", type=str, required=True, help="Output directory")
|
|
|
+ parser.add_argument("--api_url", type=str, default="http://localhost:8080/layout-parsing", help="API URL")
|
|
|
+ parser.add_argument("--pdf_dpi", type=int, default=200, help="DPI for PDF to image conversion")
|
|
|
+ parser.add_argument("--timeout", type=int, default=300, help="API timeout in seconds")
|
|
|
+ parser.add_argument("--no-normalize", action="store_true", help="禁用数字标准化")
|
|
|
+ parser.add_argument("--test_mode", action="store_true", help="Test mode (process only 20 files)")
|
|
|
+ parser.add_argument("--collect_results", type=str, help="收集处理结果到指定CSV文件")
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ normalize_numbers = not args.no_normalize
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 获取并预处理输入文件
|
|
|
+ print("🔄 Preprocessing input files...")
|
|
|
+ input_files = get_input_files(args)
|
|
|
+
|
|
|
+ if not input_files:
|
|
|
+ print("❌ No input files found or processed")
|
|
|
+ return 1
|
|
|
+
|
|
|
+ if args.test_mode:
|
|
|
+ input_files = input_files[:20]
|
|
|
+ print(f"Test mode: processing only {len(input_files)} images")
|
|
|
+
|
|
|
+ print(f"🌐 Using API: {args.api_url}")
|
|
|
+ print(f"⏱️ Timeout: {args.timeout} seconds")
|
|
|
+
|
|
|
+ # 开始处理
|
|
|
+ start_time = time.time()
|
|
|
+ results = process_images_via_api(
|
|
|
+ input_files,
|
|
|
+ args.api_url,
|
|
|
+ args.output_dir,
|
|
|
+ normalize_numbers=normalize_numbers,
|
|
|
+ timeout=args.timeout
|
|
|
+ )
|
|
|
+ total_time = time.time() - start_time
|
|
|
+
|
|
|
+ # 统计结果
|
|
|
+ success_count = sum(1 for r in results if r.get('success', False))
|
|
|
+ error_count = len(results) - success_count
|
|
|
+ pdf_page_count = sum(1 for r in results if r.get('is_pdf_page', False))
|
|
|
+ total_changes = sum(r.get('processing_info', {}).get('character_changes_count', 0) for r in results if 'processing_info' in r)
|
|
|
+
|
|
|
+ print(f"\n" + "="*60)
|
|
|
+ print(f"✅ API Processing completed!")
|
|
|
+ print(f"📊 Statistics:")
|
|
|
+ print(f" Total files processed: {len(input_files)}")
|
|
|
+ print(f" PDF pages processed: {pdf_page_count}")
|
|
|
+ print(f" Regular images processed: {len(input_files) - pdf_page_count}")
|
|
|
+ print(f" Successful: {success_count}")
|
|
|
+ print(f" Failed: {error_count}")
|
|
|
+ if len(input_files) > 0:
|
|
|
+ print(f" Success rate: {success_count / len(input_files) * 100:.2f}%")
|
|
|
+ if normalize_numbers:
|
|
|
+ print(f" 总标准化字符数: {total_changes}")
|
|
|
+ print(f"⏱️ Performance:")
|
|
|
+ print(f" Total time: {total_time:.2f} seconds")
|
|
|
+ if total_time > 0:
|
|
|
+ print(f" Throughput: {len(input_files) / total_time:.2f} files/second")
|
|
|
+ print(f" Avg time per file: {total_time / len(input_files):.2f} seconds")
|
|
|
+
|
|
|
+ # 保存结果统计
|
|
|
+ stats = {
|
|
|
+ "total_files": len(input_files),
|
|
|
+ "pdf_pages": pdf_page_count,
|
|
|
+ "regular_images": len(input_files) - pdf_page_count,
|
|
|
+ "success_count": success_count,
|
|
|
+ "error_count": error_count,
|
|
|
+ "success_rate": success_count / len(input_files) if len(input_files) > 0 else 0,
|
|
|
+ "total_time": total_time,
|
|
|
+ "throughput": len(input_files) / total_time if total_time > 0 else 0,
|
|
|
+ "avg_time_per_file": total_time / len(input_files) if len(input_files) > 0 else 0,
|
|
|
+ "api_url": args.api_url,
|
|
|
+ "pdf_dpi": args.pdf_dpi,
|
|
|
+ "normalize_numbers": normalize_numbers,
|
|
|
+ "total_character_changes": total_changes,
|
|
|
+ "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
+ }
|
|
|
+
|
|
|
+ # 保存最终结果
|
|
|
+ output_file_name = Path(args.output_dir).name
|
|
|
+ output_file = os.path.join(args.output_dir, f"{output_file_name}_api_results.json")
|
|
|
+ final_results = {
|
|
|
+ "stats": stats,
|
|
|
+ "results": results
|
|
|
+ }
|
|
|
+
|
|
|
+ with open(output_file, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(final_results, f, ensure_ascii=False, indent=2)
|
|
|
+
|
|
|
+ print(f"💾 Results saved to: {output_file}")
|
|
|
+
|
|
|
+ # 如果没有收集结果的路径,使用缺省文件名,和output_dir同一路径
|
|
|
+ if not args.collect_results:
|
|
|
+ output_file_processed = Path(args.output_dir) / f"processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv"
|
|
|
+ else:
|
|
|
+ output_file_processed = Path(args.collect_results).resolve()
|
|
|
+
|
|
|
+ processed_files = collect_pid_files(output_file)
|
|
|
+ with open(output_file_processed, 'w', encoding='utf-8') as f:
|
|
|
+ f.write("image_path,status\n")
|
|
|
+ for file_path, status in processed_files:
|
|
|
+ f.write(f"{file_path},{status}\n")
|
|
|
+ print(f"💾 Processed files saved to: {output_file_processed}")
|
|
|
+
|
|
|
+ return 0
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"❌ Processing failed: {e}", file=sys.stderr)
|
|
|
+ traceback.print_exc()
|
|
|
+ return 1
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ print(f"🚀 启动PP-StructureV3 API客户端...")
|
|
|
+ print(f"🔧 环境变量检查: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
|
|
|
+
|
|
|
+ if len(sys.argv) == 1:
|
|
|
+ # 如果没有命令行参数,使用默认配置运行
|
|
|
+ print("ℹ️ No command line arguments provided. Running with default configuration...")
|
|
|
+
|
|
|
+ # 默认配置
|
|
|
+ default_config = {
|
|
|
+ "input_dir": "../../OmniDocBench/OpenDataLab___OmniDocBench/images",
|
|
|
+ "output_dir": "./OmniDocBench_API_Results",
|
|
|
+ "api_url": "http://10.192.72.11:8111/layout-parsing",
|
|
|
+ "timeout": "300",
|
|
|
+ "collect_results": f"./OmniDocBench_API_Results/processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv",
|
|
|
+ }
|
|
|
+
|
|
|
+ # 构造参数
|
|
|
+ sys.argv = [sys.argv[0]]
|
|
|
+ for key, value in default_config.items():
|
|
|
+ sys.argv.extend([f"--{key}", str(value)])
|
|
|
+
|
|
|
+ # sys.argv.append("--no-normalize")
|
|
|
+
|
|
|
+ # 测试模式
|
|
|
+ # sys.argv.append("--test_mode")
|
|
|
+
|
|
|
+ sys.exit(main())
|