|
|
@@ -0,0 +1,170 @@
|
|
|
+#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+#you may not use this file except in compliance with the License.
|
|
|
+#You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+#Unless required by applicable law or agreed to in writing, software
|
|
|
+#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+#See the License for the specific language governing permissions and
|
|
|
+#limitations under the License.
|
|
|
+
|
|
|
+from __future__ import absolute_import
|
|
|
+from __future__ import division
|
|
|
+from __future__ import print_function
|
|
|
+
|
|
|
+import math
|
|
|
+
|
|
|
+import paddle
|
|
|
+import paddle.fluid as fluid
|
|
|
+
|
|
|
+
|
|
|
+class AlexNet():
|
|
|
+ def __init__(self, num_classes=1000):
|
|
|
+ assert num_classes is not None, "In AlextNet, num_classes cannot be None"
|
|
|
+ self.num_classes = num_classes
|
|
|
+
|
|
|
+ def __call__(self, input):
|
|
|
+ stdv = 1.0 / math.sqrt(input.shape[1] * 11 * 11)
|
|
|
+ layer_name = [
|
|
|
+ "conv1", "conv2", "conv3", "conv4", "conv5", "fc6", "fc7", "fc8"
|
|
|
+ ]
|
|
|
+ conv1 = fluid.layers.conv2d(
|
|
|
+ input=input,
|
|
|
+ num_filters=64,
|
|
|
+ filter_size=11,
|
|
|
+ stride=4,
|
|
|
+ padding=2,
|
|
|
+ groups=1,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[0] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[0] + "_weights"))
|
|
|
+ pool1 = fluid.layers.pool2d(
|
|
|
+ input=conv1,
|
|
|
+ pool_size=3,
|
|
|
+ pool_stride=2,
|
|
|
+ pool_padding=0,
|
|
|
+ pool_type='max')
|
|
|
+
|
|
|
+ stdv = 1.0 / math.sqrt(pool1.shape[1] * 5 * 5)
|
|
|
+ conv2 = fluid.layers.conv2d(
|
|
|
+ input=pool1,
|
|
|
+ num_filters=192,
|
|
|
+ filter_size=5,
|
|
|
+ stride=1,
|
|
|
+ padding=2,
|
|
|
+ groups=1,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[1] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[1] + "_weights"))
|
|
|
+ pool2 = fluid.layers.pool2d(
|
|
|
+ input=conv2,
|
|
|
+ pool_size=3,
|
|
|
+ pool_stride=2,
|
|
|
+ pool_padding=0,
|
|
|
+ pool_type='max')
|
|
|
+
|
|
|
+ stdv = 1.0 / math.sqrt(pool2.shape[1] * 3 * 3)
|
|
|
+ conv3 = fluid.layers.conv2d(
|
|
|
+ input=pool2,
|
|
|
+ num_filters=384,
|
|
|
+ filter_size=3,
|
|
|
+ stride=1,
|
|
|
+ padding=1,
|
|
|
+ groups=1,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[2] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[2] + "_weights"))
|
|
|
+
|
|
|
+ stdv = 1.0 / math.sqrt(conv3.shape[1] * 3 * 3)
|
|
|
+ conv4 = fluid.layers.conv2d(
|
|
|
+ input=conv3,
|
|
|
+ num_filters=256,
|
|
|
+ filter_size=3,
|
|
|
+ stride=1,
|
|
|
+ padding=1,
|
|
|
+ groups=1,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[3] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[3] + "_weights"))
|
|
|
+
|
|
|
+ stdv = 1.0 / math.sqrt(conv4.shape[1] * 3 * 3)
|
|
|
+ conv5 = fluid.layers.conv2d(
|
|
|
+ input=conv4,
|
|
|
+ num_filters=256,
|
|
|
+ filter_size=3,
|
|
|
+ stride=1,
|
|
|
+ padding=1,
|
|
|
+ groups=1,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[4] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[4] + "_weights"))
|
|
|
+ pool5 = fluid.layers.pool2d(
|
|
|
+ input=conv5,
|
|
|
+ pool_size=3,
|
|
|
+ pool_stride=2,
|
|
|
+ pool_padding=0,
|
|
|
+ pool_type='max')
|
|
|
+
|
|
|
+ drop6 = fluid.layers.dropout(x=pool5, dropout_prob=0.5)
|
|
|
+ stdv = 1.0 / math.sqrt(drop6.shape[1] * drop6.shape[2] *
|
|
|
+ drop6.shape[3] * 1.0)
|
|
|
+
|
|
|
+ fc6 = fluid.layers.fc(
|
|
|
+ input=drop6,
|
|
|
+ size=4096,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[5] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[5] + "_weights"))
|
|
|
+ drop7 = fluid.layers.dropout(x=fc6, dropout_prob=0.5)
|
|
|
+ stdv = 1.0 / math.sqrt(drop7.shape[1] * 1.0)
|
|
|
+
|
|
|
+ fc7 = fluid.layers.fc(
|
|
|
+ input=drop7,
|
|
|
+ size=4096,
|
|
|
+ act='relu',
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[6] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[6] + "_weights"))
|
|
|
+
|
|
|
+ stdv = 1.0 / math.sqrt(fc7.shape[1] * 1.0)
|
|
|
+ out = fluid.layers.fc(
|
|
|
+ input=fc7,
|
|
|
+ size=self.num_classes,
|
|
|
+ bias_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[7] + "_offset"),
|
|
|
+ param_attr=fluid.param_attr.ParamAttr(
|
|
|
+ initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
|
+ name=layer_name[7] + "_weights"))
|
|
|
+ return out
|