|
|
@@ -150,9 +150,12 @@ def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, sav
|
|
|
interpreter = algo.interpret_instance(image_show[0], predict_fn, pred_label, 0,
|
|
|
num_samples=num_samples, batch_size=batch_size)
|
|
|
|
|
|
- cluster_labels = kmeans_model.predict(
|
|
|
- get_feature_for_kmeans(compute_features_for_kmeans(image_show).transpose((1, 2, 0)), interpreter.segments)
|
|
|
- )
|
|
|
+ X = get_feature_for_kmeans(compute_features_for_kmeans(image_show).transpose((1, 2, 0)), interpreter.segments)
|
|
|
+ try:
|
|
|
+ cluster_labels = kmeans_model.predict(X)
|
|
|
+ except AttributeError:
|
|
|
+ from sklearn.metrics import pairwise_distances_argmin_min
|
|
|
+ cluster_labels, _ = pairwise_distances_argmin_min(X, kmeans_model.cluster_centers_)
|
|
|
save_one_lime_predict_and_kmean_labels(
|
|
|
interpreter.local_weights, pred_label,
|
|
|
cluster_labels,
|