|
|
@@ -12,14 +12,17 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
|
|
|
-from typing import Any, Dict, Optional
|
|
|
+from typing import Any, Dict, List, Optional
|
|
|
import numpy as np
|
|
|
+from scipy.ndimage import rotate
|
|
|
from ...common.reader import ReadImage
|
|
|
from ...common.batch_sampler import ImageBatchSampler
|
|
|
from ...utils.pp_option import PaddlePredictorOption
|
|
|
from ..base import BasePipeline
|
|
|
from ..components import CropByPolys, SortQuadBoxes, SortPolyBoxes
|
|
|
from .result import OCRResult
|
|
|
+from ..doc_preprocessor.result import DocPreprocessorResult
|
|
|
+from ....utils import logging
|
|
|
|
|
|
|
|
|
class OCRPipeline(BasePipeline):
|
|
|
@@ -49,11 +52,7 @@ class OCRPipeline(BasePipeline):
|
|
|
device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
|
|
|
)
|
|
|
|
|
|
- text_det_model_config = config["SubModules"]["TextDetection"]
|
|
|
- self.text_det_model = self.create_model(text_det_model_config)
|
|
|
-
|
|
|
- text_rec_model_config = config["SubModules"]["TextRecognition"]
|
|
|
- self.text_rec_model = self.create_model(text_rec_model_config)
|
|
|
+ self.inintial_predictor(config)
|
|
|
|
|
|
self.text_type = config["text_type"]
|
|
|
|
|
|
@@ -69,8 +68,162 @@ class OCRPipeline(BasePipeline):
|
|
|
self.batch_sampler = ImageBatchSampler(batch_size=1)
|
|
|
self.img_reader = ReadImage(format="BGR")
|
|
|
|
|
|
+ def set_used_models_flag(self, config: Dict) -> None:
|
|
|
+ """
|
|
|
+ Set the flags for which models to use based on the configuration.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ config (Dict): A dictionary containing configuration settings.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ None
|
|
|
+ """
|
|
|
+ pipeline_name = config["pipeline_name"]
|
|
|
+
|
|
|
+ self.pipeline_name = pipeline_name
|
|
|
+
|
|
|
+ self.use_doc_preprocessor = False
|
|
|
+
|
|
|
+ if "use_doc_preprocessor" in config:
|
|
|
+ self.use_doc_preprocessor = config["use_doc_preprocessor"]
|
|
|
+
|
|
|
+ self.use_textline_orientation = False
|
|
|
+
|
|
|
+ if "use_textline_orientation" in config:
|
|
|
+ self.use_textline_orientation = config["use_textline_orientation"]
|
|
|
+
|
|
|
+ def inintial_predictor(self, config: Dict) -> None:
|
|
|
+ """Initializes the predictor based on the provided configuration.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ config (Dict): A dictionary containing the configuration for the predictor.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ None
|
|
|
+ """
|
|
|
+
|
|
|
+ self.set_used_models_flag(config)
|
|
|
+
|
|
|
+ text_det_model_config = config["SubModules"]["TextDetection"]
|
|
|
+ self.text_det_model = self.create_model(text_det_model_config)
|
|
|
+
|
|
|
+ text_rec_model_config = config["SubModules"]["TextRecognition"]
|
|
|
+ self.text_rec_model = self.create_model(text_rec_model_config)
|
|
|
+
|
|
|
+ if self.use_doc_preprocessor:
|
|
|
+ doc_preprocessor_config = config["SubPipelines"]["DocPreprocessor"]
|
|
|
+ self.doc_preprocessor_pipeline = self.create_pipeline(
|
|
|
+ doc_preprocessor_config
|
|
|
+ )
|
|
|
+ # Just for initialize the predictor
|
|
|
+ if self.use_textline_orientation:
|
|
|
+ textline_orientation_config = config["SubModules"]["TextLineOrientation"]
|
|
|
+ self.textline_orientation_model = self.create_model(
|
|
|
+ textline_orientation_config
|
|
|
+ )
|
|
|
+ return
|
|
|
+
|
|
|
+ def rotate_image(
|
|
|
+ self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
|
|
|
+ ) -> List[np.ndarray]:
|
|
|
+ """
|
|
|
+ Rotate the given image arrays by their corresponding angles.
|
|
|
+ 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
|
|
|
+ rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
|
|
|
+ 0 means rotate by 0 degrees
|
|
|
+ 1 means rotate by 180 degrees
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ List[np.ndarray]: A list of rotated image arrays.
|
|
|
+
|
|
|
+ Raises:
|
|
|
+ AssertionError: If any rotate_angle is not 0 or 1.
|
|
|
+ AssertionError: If the lengths of input lists don't match.
|
|
|
+ """
|
|
|
+ assert len(image_array_list) == len(
|
|
|
+ rotate_angle_list
|
|
|
+ ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
|
|
|
+
|
|
|
+ for angle in rotate_angle_list:
|
|
|
+ assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
|
|
|
+
|
|
|
+ rotated_images = []
|
|
|
+ for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
|
|
|
+ # Convert 0/1 indicator to actual rotation angle
|
|
|
+ rotate_angle = rotate_indicator * 180
|
|
|
+ rotated_image = rotate(image_array, rotate_angle, reshape=True)
|
|
|
+ rotated_images.append(rotated_image)
|
|
|
+
|
|
|
+ return rotated_images
|
|
|
+
|
|
|
+ def check_input_params_valid(self, input_params: Dict) -> bool:
|
|
|
+ """
|
|
|
+ Check if the input parameters are valid based on the initialized models.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ input_params (Dict): A dictionary containing input parameters.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ bool: True if all required models are initialized according to input parameters, False otherwise.
|
|
|
+ """
|
|
|
+
|
|
|
+ if input_params["use_doc_preprocessor"] and not self.use_doc_preprocessor:
|
|
|
+ logging.error(
|
|
|
+ "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
|
|
|
+ )
|
|
|
+ return False
|
|
|
+
|
|
|
+ if (
|
|
|
+ input_params["use_textline_orientation"]
|
|
|
+ and not self.use_textline_orientation
|
|
|
+ ):
|
|
|
+ logging.error(
|
|
|
+ "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
|
|
|
+ )
|
|
|
+ return False
|
|
|
+
|
|
|
+ return True
|
|
|
+
|
|
|
+ def predict_doc_preprocessor_res(
|
|
|
+ self, image_array: np.ndarray, input_params: dict
|
|
|
+ ) -> tuple[DocPreprocessorResult, np.ndarray]:
|
|
|
+ """
|
|
|
+ Preprocess the document image based on input parameters.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_array (np.ndarray): The input image array.
|
|
|
+ input_params (dict): Dictionary containing preprocessing parameters.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple[DocPreprocessorResult, np.ndarray]: A tuple containing the preprocessing
|
|
|
+ result dictionary and the processed image array.
|
|
|
+ """
|
|
|
+ if input_params["use_doc_preprocessor"]:
|
|
|
+ use_doc_orientation_classify = input_params["use_doc_orientation_classify"]
|
|
|
+ use_doc_unwarping = input_params["use_doc_unwarping"]
|
|
|
+ doc_preprocessor_res = next(
|
|
|
+ self.doc_preprocessor_pipeline(
|
|
|
+ image_array,
|
|
|
+ use_doc_orientation_classify=use_doc_orientation_classify,
|
|
|
+ use_doc_unwarping=use_doc_unwarping,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ doc_preprocessor_image = doc_preprocessor_res["output_img"]
|
|
|
+ else:
|
|
|
+ doc_preprocessor_res = {}
|
|
|
+ doc_preprocessor_image = image_array
|
|
|
+ return doc_preprocessor_res, doc_preprocessor_image
|
|
|
+
|
|
|
def predict(
|
|
|
- self, input: str | list[str] | np.ndarray | list[np.ndarray], **kwargs
|
|
|
+ self,
|
|
|
+ input: str | list[str] | np.ndarray | list[np.ndarray],
|
|
|
+ use_doc_orientation_classify: bool = False,
|
|
|
+ use_doc_unwarping: bool = False,
|
|
|
+ use_textline_orientation: bool = False,
|
|
|
+ **kwargs,
|
|
|
) -> OCRResult:
|
|
|
"""Predicts OCR results for the given input.
|
|
|
|
|
|
@@ -82,9 +235,29 @@ class OCRPipeline(BasePipeline):
|
|
|
OCRResult: An iterable of OCRResult objects, each containing the predicted text and other relevant information.
|
|
|
"""
|
|
|
|
|
|
+ input_params = {
|
|
|
+ "use_doc_preprocessor": self.use_doc_preprocessor,
|
|
|
+ "use_doc_orientation_classify": use_doc_orientation_classify,
|
|
|
+ "use_doc_unwarping": use_doc_unwarping,
|
|
|
+ "use_textline_orientation": self.use_textline_orientation,
|
|
|
+ }
|
|
|
+ if use_doc_orientation_classify or use_doc_unwarping:
|
|
|
+ input_params["use_doc_preprocessor"] = True
|
|
|
+ else:
|
|
|
+ input_params["use_doc_preprocessor"] = False
|
|
|
+
|
|
|
+ if not self.check_input_params_valid(input_params):
|
|
|
+ yield None
|
|
|
+
|
|
|
for img_id, batch_data in enumerate(self.batch_sampler(input)):
|
|
|
- raw_img = self.img_reader(batch_data)[0]
|
|
|
- det_res = next(self.text_det_model(raw_img))
|
|
|
+ image_array = self.img_reader(batch_data)[0]
|
|
|
+ img_id += 1
|
|
|
+
|
|
|
+ doc_preprocessor_res, doc_preprocessor_image = (
|
|
|
+ self.predict_doc_preprocessor_res(image_array, input_params)
|
|
|
+ )
|
|
|
+
|
|
|
+ det_res = next(self.text_det_model(doc_preprocessor_image))
|
|
|
|
|
|
dt_polys = det_res["dt_polys"]
|
|
|
dt_scores = det_res["dt_scores"]
|
|
|
@@ -93,19 +266,31 @@ class OCRPipeline(BasePipeline):
|
|
|
|
|
|
dt_polys = self._sort_boxes(dt_polys)
|
|
|
|
|
|
- img_id += 1
|
|
|
-
|
|
|
single_img_res = {
|
|
|
- "input_img": raw_img,
|
|
|
+ "input_img": image_array,
|
|
|
+ "doc_preprocessor_image": doc_preprocessor_image,
|
|
|
+ "doc_preprocessor_res": doc_preprocessor_res,
|
|
|
"dt_polys": dt_polys,
|
|
|
"img_id": img_id,
|
|
|
+ "input_params": input_params,
|
|
|
"text_type": self.text_type,
|
|
|
}
|
|
|
|
|
|
single_img_res["rec_text"] = []
|
|
|
single_img_res["rec_score"] = []
|
|
|
if len(dt_polys) > 0:
|
|
|
- all_subs_of_img = list(self._crop_by_polys(raw_img, dt_polys))
|
|
|
+ all_subs_of_img = list(
|
|
|
+ self._crop_by_polys(doc_preprocessor_image, dt_polys)
|
|
|
+ )
|
|
|
+ # use textline orientation model
|
|
|
+ if input_params["use_textline_orientation"]:
|
|
|
+ angles = [
|
|
|
+ textline_angle_info["class_ids"][0]
|
|
|
+ for textline_angle_info in self.textline_orientation_model(
|
|
|
+ all_subs_of_img
|
|
|
+ )
|
|
|
+ ]
|
|
|
+ all_subs_of_img = self.rotate_image(all_subs_of_img, angles)
|
|
|
|
|
|
for rec_res in self.text_rec_model(all_subs_of_img):
|
|
|
single_img_res["rec_text"].append(rec_res["rec_text"])
|