|
|
@@ -1,305 +0,0 @@
|
|
|
-# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
-#
|
|
|
-# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-# you may not use this file except in compliance with the License.
|
|
|
-# You may obtain a copy of the License at
|
|
|
-#
|
|
|
-# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-#
|
|
|
-# Unless required by applicable law or agreed to in writing, software
|
|
|
-# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-# See the License for the specific language governing permissions and
|
|
|
-# limitations under the License.
|
|
|
-
|
|
|
-from __future__ import absolute_import
|
|
|
-from __future__ import division
|
|
|
-from __future__ import print_function
|
|
|
-from __future__ import unicode_literals
|
|
|
-
|
|
|
-import os
|
|
|
-import sys
|
|
|
-import numpy as np
|
|
|
-import itertools
|
|
|
-import paddlex.utils.logging as logging
|
|
|
-
|
|
|
-__all__ = [
|
|
|
- '_draw_pr_curve', 'bbox_area', 'jaccard_overlap', 'prune_zero_padding',
|
|
|
- 'DetectionMAP'
|
|
|
-]
|
|
|
-
|
|
|
-
|
|
|
-def _draw_pr_curve(precision,
|
|
|
- recall,
|
|
|
- iou=0.5,
|
|
|
- out_dir='pr_curve',
|
|
|
- file_name='precision_recall_curve.jpg'):
|
|
|
- if not os.path.exists(out_dir):
|
|
|
- os.makedirs(out_dir)
|
|
|
- output_path = os.path.join(out_dir, file_name)
|
|
|
- try:
|
|
|
- import matplotlib.pyplot as plt
|
|
|
- except Exception as e:
|
|
|
- logging.error('Matplotlib not found, plaese install matplotlib.'
|
|
|
- 'for example: `pip install matplotlib`.')
|
|
|
- raise e
|
|
|
- plt.cla()
|
|
|
- plt.figure('P-R Curve')
|
|
|
- plt.title('Precision/Recall Curve(IoU={})'.format(iou))
|
|
|
- plt.xlabel('Recall')
|
|
|
- plt.ylabel('Precision')
|
|
|
- plt.grid(True)
|
|
|
- plt.plot(recall, precision)
|
|
|
- plt.savefig(output_path)
|
|
|
-
|
|
|
-
|
|
|
-def bbox_area(bbox, is_bbox_normalized):
|
|
|
- """
|
|
|
- Calculate area of a bounding box
|
|
|
- """
|
|
|
- norm = 1. - float(is_bbox_normalized)
|
|
|
- width = bbox[2] - bbox[0] + norm
|
|
|
- height = bbox[3] - bbox[1] + norm
|
|
|
- return width * height
|
|
|
-
|
|
|
-
|
|
|
-def jaccard_overlap(pred, gt, is_bbox_normalized=False):
|
|
|
- """
|
|
|
- Calculate jaccard overlap ratio between two bounding box
|
|
|
- """
|
|
|
- if pred[0] >= gt[2] or pred[2] <= gt[0] or \
|
|
|
- pred[1] >= gt[3] or pred[3] <= gt[1]:
|
|
|
- return 0.
|
|
|
- inter_xmin = max(pred[0], gt[0])
|
|
|
- inter_ymin = max(pred[1], gt[1])
|
|
|
- inter_xmax = min(pred[2], gt[2])
|
|
|
- inter_ymax = min(pred[3], gt[3])
|
|
|
- inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
|
|
|
- is_bbox_normalized)
|
|
|
- pred_size = bbox_area(pred, is_bbox_normalized)
|
|
|
- gt_size = bbox_area(gt, is_bbox_normalized)
|
|
|
- overlap = float(inter_size) / (pred_size + gt_size - inter_size)
|
|
|
- return overlap
|
|
|
-
|
|
|
-
|
|
|
-def prune_zero_padding(gt_box, gt_label, difficult=None):
|
|
|
- valid_cnt = 0
|
|
|
- for i in range(len(gt_box)):
|
|
|
- if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \
|
|
|
- gt_box[i, 2] == 0 and gt_box[i, 3] == 0:
|
|
|
- break
|
|
|
- valid_cnt += 1
|
|
|
- return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
|
|
|
- if difficult is not None else None)
|
|
|
-
|
|
|
-
|
|
|
-class DetectionMAP(object):
|
|
|
- """
|
|
|
- Calculate detection mean average precision.
|
|
|
- Currently support two types: 11point and integral
|
|
|
-
|
|
|
- Args:
|
|
|
- class_num (int): The class number.
|
|
|
- overlap_thresh (float): The threshold of overlap
|
|
|
- ratio between prediction bounding box and
|
|
|
- ground truth bounding box for deciding
|
|
|
- true/false positive. Default 0.5.
|
|
|
- map_type (str): Calculation method of mean average
|
|
|
- precision, currently support '11point' and
|
|
|
- 'integral'. Default '11point'.
|
|
|
- is_bbox_normalized (bool): Whether bounding boxes
|
|
|
- is normalized to range[0, 1]. Default False.
|
|
|
- evaluate_difficult (bool): Whether to evaluate
|
|
|
- difficult bounding boxes. Default False.
|
|
|
- catid2name (dict): Mapping between category id and category name.
|
|
|
- classwise (bool): Whether per-category AP and draw
|
|
|
- P-R Curve or not.
|
|
|
- """
|
|
|
-
|
|
|
- def __init__(self,
|
|
|
- class_num,
|
|
|
- overlap_thresh=0.5,
|
|
|
- map_type='11point',
|
|
|
- is_bbox_normalized=False,
|
|
|
- evaluate_difficult=False,
|
|
|
- catid2name=None,
|
|
|
- classwise=False):
|
|
|
- self.class_num = class_num
|
|
|
- self.overlap_thresh = overlap_thresh
|
|
|
- assert map_type in ['11point', 'integral'], \
|
|
|
- "map_type currently only support '11point' "\
|
|
|
- "and 'integral'"
|
|
|
- self.map_type = map_type
|
|
|
- self.is_bbox_normalized = is_bbox_normalized
|
|
|
- self.evaluate_difficult = evaluate_difficult
|
|
|
- self.classwise = classwise
|
|
|
- self.classes = []
|
|
|
- for cname in catid2name.values():
|
|
|
- self.classes.append(cname)
|
|
|
- self.reset()
|
|
|
-
|
|
|
- def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
|
|
|
- """
|
|
|
- Update metric statics from given prediction and ground
|
|
|
- truth infomations.
|
|
|
- """
|
|
|
- if difficult is None:
|
|
|
- difficult = np.zeros_like(gt_label)
|
|
|
-
|
|
|
- # record class gt count
|
|
|
- for gtl, diff in zip(gt_label, difficult):
|
|
|
- if self.evaluate_difficult or int(diff) == 0:
|
|
|
- self.class_gt_counts[int(np.array(gtl))] += 1
|
|
|
-
|
|
|
- # record class score positive
|
|
|
- visited = [False] * len(gt_label)
|
|
|
- for b, s, l in zip(bbox, score, label):
|
|
|
- xmin, ymin, xmax, ymax = b.tolist()
|
|
|
- pred = [xmin, ymin, xmax, ymax]
|
|
|
- max_idx = -1
|
|
|
- max_overlap = -1.0
|
|
|
- for i, gl in enumerate(gt_label):
|
|
|
- if int(gl) == int(l):
|
|
|
- overlap = jaccard_overlap(pred, gt_box[i],
|
|
|
- self.is_bbox_normalized)
|
|
|
- if overlap > max_overlap:
|
|
|
- max_overlap = overlap
|
|
|
- max_idx = i
|
|
|
-
|
|
|
- if max_overlap > self.overlap_thresh:
|
|
|
- if self.evaluate_difficult or \
|
|
|
- int(np.array(difficult[max_idx])) == 0:
|
|
|
- if not visited[max_idx]:
|
|
|
- self.class_score_poss[int(l)].append([s, 1.0])
|
|
|
- visited[max_idx] = True
|
|
|
- else:
|
|
|
- self.class_score_poss[int(l)].append([s, 0.0])
|
|
|
- else:
|
|
|
- self.class_score_poss[int(l)].append([s, 0.0])
|
|
|
-
|
|
|
- def reset(self):
|
|
|
- """
|
|
|
- Reset metric statics
|
|
|
- """
|
|
|
- self.class_score_poss = [[] for _ in range(self.class_num)]
|
|
|
- self.class_gt_counts = [0] * self.class_num
|
|
|
- self.mAP = None
|
|
|
-
|
|
|
- def accumulate(self):
|
|
|
- """
|
|
|
- Accumulate metric results and calculate mAP
|
|
|
- """
|
|
|
- mAP = 0.
|
|
|
- valid_cnt = 0
|
|
|
- eval_results = []
|
|
|
- for score_pos, count in zip(self.class_score_poss,
|
|
|
- self.class_gt_counts):
|
|
|
- if count == 0: continue
|
|
|
- if len(score_pos) == 0:
|
|
|
- valid_cnt += 1
|
|
|
- continue
|
|
|
-
|
|
|
- accum_tp_list, accum_fp_list = \
|
|
|
- self._get_tp_fp_accum(score_pos)
|
|
|
- precision = []
|
|
|
- recall = []
|
|
|
- for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
|
|
|
- precision.append(float(ac_tp) / (ac_tp + ac_fp))
|
|
|
- recall.append(float(ac_tp) / count)
|
|
|
-
|
|
|
- one_class_ap = 0.0
|
|
|
- if self.map_type == '11point':
|
|
|
- max_precisions = [0.] * 11
|
|
|
- start_idx = len(precision) - 1
|
|
|
- for j in range(10, -1, -1):
|
|
|
- for i in range(start_idx, -1, -1):
|
|
|
- if recall[i] < float(j) / 10.:
|
|
|
- start_idx = i
|
|
|
- if j > 0:
|
|
|
- max_precisions[j - 1] = max_precisions[j]
|
|
|
- break
|
|
|
- else:
|
|
|
- if max_precisions[j] < precision[i]:
|
|
|
- max_precisions[j] = precision[i]
|
|
|
- one_class_ap = sum(max_precisions) / 11.
|
|
|
- mAP += one_class_ap
|
|
|
- valid_cnt += 1
|
|
|
- elif self.map_type == 'integral':
|
|
|
- import math
|
|
|
- prev_recall = 0.
|
|
|
- for i in range(len(precision)):
|
|
|
- recall_gap = math.fabs(recall[i] - prev_recall)
|
|
|
- if recall_gap > 1e-6:
|
|
|
- one_class_ap += precision[i] * recall_gap
|
|
|
- prev_recall = recall[i]
|
|
|
- mAP += one_class_ap
|
|
|
- valid_cnt += 1
|
|
|
- else:
|
|
|
- logging.error("Unspported mAP type {}".format(self.map_type))
|
|
|
- sys.exit(1)
|
|
|
- eval_results.append({
|
|
|
- 'class': self.classes[valid_cnt - 1],
|
|
|
- 'ap': one_class_ap,
|
|
|
- 'precision': precision,
|
|
|
- 'recall': recall,
|
|
|
- })
|
|
|
- self.eval_results = eval_results
|
|
|
- self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
|
|
|
-
|
|
|
- def get_map(self):
|
|
|
- """
|
|
|
- Get mAP result
|
|
|
- """
|
|
|
- if self.mAP is None:
|
|
|
- logging.error("mAP is not calculated.")
|
|
|
- if self.classwise:
|
|
|
- # Compute per-category AP and PR curve
|
|
|
- try:
|
|
|
- from terminaltables import AsciiTable
|
|
|
- except Exception as e:
|
|
|
- logging.error(
|
|
|
- 'terminaltables not found, plaese install terminaltables. '
|
|
|
- 'for example: `pip install terminaltables`.')
|
|
|
- raise e
|
|
|
- results_per_category = []
|
|
|
- for eval_result in self.eval_results:
|
|
|
- results_per_category.append(
|
|
|
- (str(eval_result['class']),
|
|
|
- '{:0.3f}'.format(float(eval_result['ap']))))
|
|
|
- _draw_pr_curve(
|
|
|
- eval_result['precision'],
|
|
|
- eval_result['recall'],
|
|
|
- out_dir='voc_pr_curve',
|
|
|
- file_name='{}_precision_recall_curve.jpg'.format(
|
|
|
- eval_result['class']))
|
|
|
-
|
|
|
- num_columns = min(6, len(results_per_category) * 2)
|
|
|
- results_flatten = list(itertools.chain(*results_per_category))
|
|
|
- headers = ['category', 'AP'] * (num_columns // 2)
|
|
|
- results_2d = itertools.zip_longest(* [
|
|
|
- results_flatten[i::num_columns] for i in range(num_columns)
|
|
|
- ])
|
|
|
- table_data = [headers]
|
|
|
- table_data += [result for result in results_2d]
|
|
|
- table = AsciiTable(table_data)
|
|
|
- logging.info('Per-category of VOC AP: \n{}'.format(table.table))
|
|
|
- logging.info(
|
|
|
- "per-category PR curve has output to voc_pr_curve folder.")
|
|
|
- return self.mAP
|
|
|
-
|
|
|
- def _get_tp_fp_accum(self, score_pos_list):
|
|
|
- """
|
|
|
- Calculate accumulating true/false positive results from
|
|
|
- [score, pos] records
|
|
|
- """
|
|
|
- sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
|
|
|
- accum_tp = 0
|
|
|
- accum_fp = 0
|
|
|
- accum_tp_list = []
|
|
|
- accum_fp_list = []
|
|
|
- for (score, pos) in sorted_list:
|
|
|
- accum_tp += int(pos)
|
|
|
- accum_tp_list.append(accum_tp)
|
|
|
- accum_fp += 1 - int(pos)
|
|
|
- accum_fp_list.append(accum_fp)
|
|
|
- return accum_tp_list, accum_fp_list
|