Преглед изворни кода

feat: 添加双GPU并行预测器,支持多线程处理OmniDocBench数据集

zhch158_admin пре 3 месеци
родитељ
комит
4ec1236df0
1 измењених фајлова са 453 додато и 0 уклоњено
  1. 453 0
      zhch/ppstructurev3_dual_gpu_optimized.py

+ 453 - 0
zhch/ppstructurev3_dual_gpu_optimized.py

@@ -0,0 +1,453 @@
+# zhch/ppstructurev3_dual_gpu_optimized.py
+import json
+import time
+import os
+import glob
+import traceback
+from pathlib import Path
+from typing import List, Dict, Any, Tuple
+from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
+from multiprocessing import Queue, Manager, Process
+import cv2
+import numpy as np
+from paddlex import create_pipeline
+from tqdm import tqdm
+import threading
+import queue
+import paddle
+
+from dotenv import load_dotenv
+load_dotenv(override=True)
+
+class PPStructureV3DualGPUPredictor:
+    """
+    PP-StructureV3双GPU并行预测器
+    """
+
+    def __init__(self, pipeline_config_path: str = "PP-StructureV3", output_path: str = "output", gpu_id: int = 0):
+        """
+        初始化预测器
+        
+        Args:
+            pipeline_config_path: PaddleX pipeline配置文件路径
+            output_path: 输出路径
+            gpu_id: GPU设备ID (0 或 1)
+        """
+        self.pipeline_config = pipeline_config_path
+        self.pipeline = None  # 延迟初始化
+        self.output_path = output_path
+        self.gpu_id = gpu_id
+        self.device = f"gpu:{gpu_id}"
+
+    def _ensure_pipeline(self):
+        """确保pipeline已初始化(线程安全)"""
+        if self.pipeline is None:
+            # 设置当前GPU
+            paddle.device.set_device(f"gpu:{self.gpu_id}")
+            self.pipeline = create_pipeline(pipeline=self.pipeline_config)
+            print(f"Pipeline初始化完成 - GPU:{self.gpu_id}")
+
+    def process_single_image(self, image_path: str) -> Dict[str, Any]:
+        """
+        处理单张图像
+        
+        Args:
+            image_path: 图像路径
+            
+        Returns:
+            处理结果{"image_path": str, "success": bool, "processing_time": float, "error": str}
+        """
+        try:
+            # 确保pipeline已初始化
+            self._ensure_pipeline()
+            
+            # 读取图像获取尺寸信息
+            image = cv2.imread(image_path)
+            if image is None:
+                return {
+                    "image_path": Path(image_path).name,
+                    "error": "无法读取图像",
+                    "success": False,
+                    "processing_time": 0,
+                    "gpu_id": self.gpu_id
+                }
+                
+            height, width = image.shape[:2]
+            
+            # 运行PaddleX pipeline
+            start_time = time.time()
+            
+            output = self.pipeline.predict(
+                input=image_path,
+                device=self.device,
+                use_doc_orientation_classify=True,
+                use_doc_unwarping=False,
+                use_seal_recognition=True,
+                use_chart_recognition=True,
+                use_table_recognition=True,
+                use_formula_recognition=True,
+            )
+            
+            # 保存结果
+            for res in output:
+                res.save_to_json(save_path=self.output_path)
+                res.save_to_markdown(save_path=self.output_path)
+            
+            process_time = time.time() - start_time
+            
+            # 返回处理结果
+            return {
+                "image_path": Path(image_path).name,
+                "processing_time": process_time,
+                "success": True,
+                "gpu_id": self.gpu_id
+            }
+            
+        except Exception as e:
+            return {
+                "image_path": Path(image_path).name,
+                "error": str(e),
+                "success": False,
+                "processing_time": 0,
+                "gpu_id": self.gpu_id
+            }
+    
+    def process_batch(self, image_paths: List[str]) -> List[Dict[str, Any]]:
+        """
+        批处理图像
+        
+        Args:
+            image_paths: 图像路径列表
+            
+        Returns:
+            结果列表
+        """
+        results = []
+        
+        for image_path in image_paths:
+            result = self.process_single_image(image_path)
+            results.append(result)
+        
+        return results
+
+class DualGPUThreadWorker:
+    """双GPU线程工作器 - 每个线程维护自己的pipeline实例"""
+    
+    def __init__(self, pipeline_config: str, output_path: str, gpu_id: int, worker_id: int):
+        self.worker_id = worker_id
+        self.gpu_id = gpu_id
+        self.predictor = PPStructureV3DualGPUPredictor(
+            pipeline_config, 
+            output_path=f"{output_path}/gpu{gpu_id}_worker_{worker_id}", 
+            gpu_id=gpu_id
+        )
+        self.task_queue = queue.Queue()
+        self.result_queue = queue.Queue()
+        self.running = True
+        
+    def add_batch(self, batch: List[str]):
+        """添加批处理任务"""
+        self.task_queue.put(batch)
+    
+    def get_results(self) -> List[Dict[str, Any]]:
+        """获取处理结果"""
+        results = []
+        while not self.result_queue.empty():
+            try:
+                result = self.result_queue.get_nowait()
+                results.extend(result)
+            except queue.Empty:
+                break
+        return results
+    
+    def worker_loop(self):
+        """工作循环"""
+        print(f"GPU{self.gpu_id} Worker{self.worker_id} 开始工作")
+        
+        while self.running:
+            try:
+                batch = self.task_queue.get(timeout=1.0)
+                if batch is None:  # 结束信号
+                    break
+                    
+                # 处理批次
+                batch_results = self.predictor.process_batch(batch)
+                self.result_queue.put(batch_results)
+                
+            except queue.Empty:
+                continue
+            except Exception as e:
+                print(f"GPU{self.gpu_id} Worker{self.worker_id} 处理出错: {e}")
+    
+    def stop(self):
+        """停止工作线程"""
+        self.running = False
+        self.task_queue.put(None)  # 发送结束信号
+
+def parallel_process_with_dual_gpu(image_paths: List[str],
+                                 batch_size: int = 4,
+                                 workers_per_gpu: int = 2,  # 每个GPU的worker数量
+                                 pipeline_config: str = "PP-StructureV3",
+                                 output_path: str = "./output") -> List[Dict[str, Any]]:
+    """
+    使用双GPU优化的多线程并行处理
+    
+    Args:
+        image_paths: 图像路径列表
+        batch_size: 批处理大小
+        workers_per_gpu: 每个GPU的worker数量(推荐2个)
+        pipeline_config: pipeline配置
+        output_path: 输出路径
+        
+    Returns:
+        处理结果列表
+    """
+    # 确保输出目录存在
+    os.makedirs(output_path, exist_ok=True)
+    
+    # 检查可用GPU
+    try:
+        gpu_count = paddle.device.cuda.device_count()
+        print(f"检测到 {gpu_count} 个GPU")
+        
+        if gpu_count < 2:
+            print("警告:检测到的GPU数量少于2个,建议检查CUDA配置")
+            available_gpus = list(range(gpu_count))
+        else:
+            available_gpus = [0, 1]  # 使用GPU 0和1
+            
+    except Exception as e:
+        print(f"GPU检测失败: {e}")
+        available_gpus = [0]  # 降级为单GPU
+    
+    total_workers = len(available_gpus) * workers_per_gpu
+    print(f"使用GPU: {available_gpus}")
+    print(f"每GPU Worker数: {workers_per_gpu}")
+    print(f"总Worker数: {total_workers}")
+    
+    # 将图像路径分批
+    batches = [image_paths[i:i + batch_size] for i in range(0, len(image_paths), batch_size)]
+    
+    # 创建工作线程
+    workers = []
+    threads = []
+    
+    worker_id = 0
+    for gpu_id in available_gpus:
+        for i in range(workers_per_gpu):
+            worker = DualGPUThreadWorker(pipeline_config, output_path, gpu_id, worker_id)
+            workers.append(worker)
+            
+            thread = threading.Thread(target=worker.worker_loop, name=f"GPU{gpu_id}_Worker{worker_id}")
+            thread.daemon = True
+            thread.start()
+            threads.append(thread)
+            worker_id += 1
+    
+    print(f"启动了 {len(workers)} 个工作线程,分布在 {len(available_gpus)} 个GPU上")
+    
+    # 分发任务
+    all_results = []
+    total_images = len(image_paths)
+    completed_count = 0
+    
+    try:
+        with tqdm(total=total_images, desc="双GPU处理图像", unit="张") as pbar:
+            # 轮流分发批次到不同的worker
+            for i, batch in enumerate(batches):
+                worker_id = i % len(workers)
+                workers[worker_id].add_batch(batch)
+            
+            # 等待所有任务完成
+            while completed_count < total_images:
+                time.sleep(0.1)  # 短暂等待
+                
+                # 收集结果
+                for worker in workers:
+                    batch_results = worker.get_results()
+                    if batch_results:
+                        all_results.extend(batch_results)
+                        completed_count += len(batch_results)
+                        pbar.update(len(batch_results))
+                        
+                        # 更新进度条
+                        success_count = sum(1 for r in batch_results if r.get('success', False))
+                        
+                        # 按GPU统计
+                        gpu_stats = {}
+                        for r in all_results:
+                            gpu_id = r.get('gpu_id', 'unknown')
+                            if gpu_id not in gpu_stats:
+                                gpu_stats[gpu_id] = {'success': 0, 'total': 0}
+                            gpu_stats[gpu_id]['total'] += 1
+                            if r.get('success', False):
+                                gpu_stats[gpu_id]['success'] += 1
+                        
+                        gpu_info = ', '.join([f"GPU{k}:{v['success']}/{v['total']}" for k, v in gpu_stats.items()])
+                        
+                        pbar.set_postfix({
+                            'recent_success': f"{success_count}/{len(batch_results)}",
+                            'gpu_distribution': gpu_info
+                        })
+    
+    finally:
+        # 停止所有工作线程
+        for worker in workers:
+            worker.stop()
+        
+        # 等待线程结束
+        for thread in threads:
+            thread.join(timeout=3.0)
+    
+    return all_results
+
+def monitor_gpu_memory():
+    """监控GPU内存使用情况"""
+    try:
+        for gpu_id in [0, 1]:
+            paddle.device.set_device(f"gpu:{gpu_id}")
+            allocated = paddle.device.cuda.memory_allocated() / 1024**3
+            reserved = paddle.device.cuda.memory_reserved() / 1024**3
+            print(f"GPU {gpu_id} - 已分配: {allocated:.2f}GB, 已预留: {reserved:.2f}GB")
+    except Exception as e:
+        print(f"GPU内存监控失败: {e}")
+
+def main():
+    """主函数 - 双GPU优化的并行处理"""
+    
+    # 配置参数
+    dataset_path = "../../OmniDocBench/OpenDataLab___OmniDocBench/images"
+    output_dir = "./OmniDocBench_Results_DualGPU"
+    pipeline_config = "PP-StructureV3"
+    
+    # 双GPU处理参数
+    batch_size = 4              # 批处理大小
+    workers_per_gpu = 2         # 每个GPU的worker数量(24GB GPU推荐2个)
+    
+    # 确保输出目录存在
+    print(f"输出目录: {Path(output_dir).absolute()}")
+    os.makedirs(output_dir, exist_ok=True)
+    
+    dataset_path = Path(dataset_path).resolve()
+    output_dir = Path(output_dir).resolve()
+    
+    print("="*60)
+    print("OmniDocBench 双GPU优化并行处理开始")
+    print("="*60)
+    print(f"数据集路径: {dataset_path}")
+    print(f"输出目录: {output_dir}")
+    print(f"批处理大小: {batch_size}")
+    print(f"每GPU Worker数: {workers_per_gpu}")
+    print(f"总Worker数: {workers_per_gpu * 2}")
+    
+    # 监控初始GPU状态
+    print("\n初始GPU内存状态:")
+    monitor_gpu_memory()
+    
+    # 查找所有图像文件
+    image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp', '*.tiff']
+    image_files = []
+    
+    for ext in image_extensions:
+        image_files.extend(glob.glob(os.path.join(dataset_path, ext)))
+    
+    print(f"\n找到 {len(image_files)} 个图像文件")
+    
+    if not image_files:
+        print("未找到任何图像文件,程序终止")
+        return
+    
+    # 限制处理数量用于测试
+    # image_files = image_files[:40]  # 取消注释以限制处理数量
+    
+    # 开始处理
+    start_time = time.time()
+    
+    try:
+        print("\n使用双GPU优化并行处理...")
+        results = parallel_process_with_dual_gpu(
+            image_files, 
+            batch_size, 
+            workers_per_gpu, 
+            pipeline_config, 
+            str(output_dir)
+        )
+        
+        total_time = time.time() - start_time
+        
+        # 统计信息
+        success_count = sum(1 for r in results if r.get('success', False))
+        error_count = len(results) - success_count
+        total_processing_time = sum(r.get('processing_time', 0) for r in results if r.get('success', False))
+        avg_processing_time = total_processing_time / success_count if success_count > 0 else 0
+        
+        # 按GPU统计
+        gpu_stats = {}
+        for r in results:
+            gpu_id = r.get('gpu_id', 'unknown')
+            if gpu_id not in gpu_stats:
+                gpu_stats[gpu_id] = {'success': 0, 'total': 0, 'total_time': 0}
+            gpu_stats[gpu_id]['total'] += 1
+            if r.get('success', False):
+                gpu_stats[gpu_id]['success'] += 1
+                gpu_stats[gpu_id]['total_time'] += r.get('processing_time', 0)
+        
+        # 保存结果统计
+        stats = {
+            "total_files": len(image_files),
+            "success_count": success_count,
+            "error_count": error_count,
+            "success_rate": success_count / len(image_files),
+            "total_time": total_time,
+            "avg_processing_time": avg_processing_time,
+            "throughput": len(image_files) / total_time,
+            "batch_size": batch_size,
+            "workers_per_gpu": workers_per_gpu,
+            "total_workers": workers_per_gpu * 2,
+            "gpu_stats": gpu_stats,
+            "optimization": "双GPU多线程并行"
+        }
+        
+        # 保存最终结果
+        output_file = os.path.join(output_dir, f"OmniDocBench_DualGPU_batch{batch_size}_workers{workers_per_gpu}.json")
+        final_results = {
+            "results": results,
+            "stats": stats
+        }
+        
+        with open(output_file, 'w', encoding='utf-8') as f:
+            json.dump(final_results, f, ensure_ascii=False, indent=2)
+        
+        print("\n" + "="*60)
+        print("双GPU优化并行处理完成!")
+        print("="*60)
+        print(f"总文件数: {len(image_files)}")
+        print(f"成功处理: {success_count}")
+        print(f"失败数量: {error_count}")
+        print(f"成功率: {success_count / len(image_files) * 100:.2f}%")
+        print(f"总耗时: {total_time:.2f}秒")
+        print(f"平均处理时间: {avg_processing_time:.2f}秒/张")
+        print(f"吞吐量: {len(image_files) / total_time:.2f}张/秒")
+        print(f"Worker数: {workers_per_gpu * 2} (每GPU {workers_per_gpu}个)")
+        
+        # GPU统计
+        print(f"\nGPU分布统计:")
+        for gpu_id, stat in gpu_stats.items():
+            if stat['total'] > 0:
+                gpu_success_rate = stat['success'] / stat['total'] * 100
+                gpu_avg_time = stat['total_time'] / stat['success'] if stat['success'] > 0 else 0
+                print(f"  GPU {gpu_id}: {stat['success']}/{stat['total']} 成功 "
+                      f"({gpu_success_rate:.1f}%), 平均 {gpu_avg_time:.2f}s/张")
+        
+        print(f"\n结果保存至: {output_file}")
+        
+        # 监控最终GPU状态
+        print("\n最终GPU内存状态:")
+        monitor_gpu_memory()
+        
+    except Exception as e:
+        print(f"处理过程中发生错误: {str(e)}")
+        traceback.print_exc()
+
+if __name__ == "__main__":
+    main()