|
|
@@ -0,0 +1,434 @@
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import os, sys
|
|
|
+from typing import Any, Dict, Optional
|
|
|
+import numpy as np
|
|
|
+import cv2
|
|
|
+from ..base import BasePipeline
|
|
|
+from ..components import CropByBoxes
|
|
|
+from .utils import get_neighbor_boxes_idx
|
|
|
+from .table_recognition_post_processing_v2 import get_table_recognition_res
|
|
|
+from .result import SingleTableRecognitionResult, TableRecognitionResult
|
|
|
+from ....utils import logging
|
|
|
+from ...utils.pp_option import PaddlePredictorOption
|
|
|
+from ...common.reader import ReadImage
|
|
|
+from ...common.batch_sampler import ImageBatchSampler
|
|
|
+from ..ocr.result import OCRResult
|
|
|
+from ..doc_preprocessor.result import DocPreprocessorResult
|
|
|
+
|
|
|
+# [TODO] 待更新models_new到models
|
|
|
+from ...models_new.object_detection.result import DetResult
|
|
|
+
|
|
|
+
|
|
|
+class TableRecognitionPipelineV2(BasePipeline):
|
|
|
+ """Table Recognition Pipeline"""
|
|
|
+
|
|
|
+ entities = ["table_recognition_v2"]
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ config: Dict,
|
|
|
+ device: str = None,
|
|
|
+ pp_option: PaddlePredictorOption = None,
|
|
|
+ use_hpip: bool = False,
|
|
|
+ hpi_params: Optional[Dict[str, Any]] = None,
|
|
|
+ ) -> None:
|
|
|
+ """Initializes the layout parsing pipeline.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ config (Dict): Configuration dictionary containing various settings.
|
|
|
+ device (str, optional): Device to run the predictions on. Defaults to None.
|
|
|
+ pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
|
|
|
+ use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
|
|
|
+ hpi_params (Optional[Dict[str, Any]], optional): HPIP parameters. Defaults to None.
|
|
|
+ """
|
|
|
+
|
|
|
+ super().__init__(
|
|
|
+ device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
|
|
|
+ )
|
|
|
+
|
|
|
+ self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
|
|
|
+ if self.use_doc_preprocessor:
|
|
|
+ doc_preprocessor_config = config.get("SubPipelines", {}).get(
|
|
|
+ "DocPreprocessor",
|
|
|
+ {
|
|
|
+ "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
|
|
|
+ },
|
|
|
+ )
|
|
|
+ self.doc_preprocessor_pipeline = self.create_pipeline(
|
|
|
+ doc_preprocessor_config
|
|
|
+ )
|
|
|
+
|
|
|
+ self.use_layout_detection = config.get("use_layout_detection", True)
|
|
|
+ if self.use_layout_detection:
|
|
|
+ layout_det_config = config.get("SubModules", {}).get(
|
|
|
+ "LayoutDetection",
|
|
|
+ {"model_config_error": "config error for layout_det_model!"},
|
|
|
+ )
|
|
|
+ self.layout_det_model = self.create_model(layout_det_config)
|
|
|
+
|
|
|
+ table_cls_config = config.get("SubModules", {}).get(
|
|
|
+ "TableClassification",
|
|
|
+ {"model_config_error": "config error for table_classification_model!"},
|
|
|
+ )
|
|
|
+ self.table_cls_model = self.create_model(table_cls_config)
|
|
|
+
|
|
|
+ wired_table_rec_config = config.get("SubModules", {}).get(
|
|
|
+ "WiredTableStructureRecognition",
|
|
|
+ {"model_config_error": "config error for wired_table_structure_model!"},
|
|
|
+ )
|
|
|
+ self.wired_table_rec_model = self.create_model(wired_table_rec_config)
|
|
|
+
|
|
|
+ wireless_table_rec_config = config.get("SubModules", {}).get(
|
|
|
+ "WirelessTableStructureRecognition",
|
|
|
+ {"model_config_error": "config error for wireless_table_structure_model!"},
|
|
|
+ )
|
|
|
+ self.wireless_table_rec_model = self.create_model(wireless_table_rec_config)
|
|
|
+
|
|
|
+ wired_table_cells_det_config = config.get("SubModules", {}).get(
|
|
|
+ "WiredTableCellsDetection",
|
|
|
+ {"model_config_error": "config error for wired_table_cells_detection_model!"},
|
|
|
+ )
|
|
|
+ self.wired_table_cells_detection_model = self.create_model(wired_table_cells_det_config)
|
|
|
+
|
|
|
+ wireless_table_cells_det_config = config.get("SubModules", {}).get(
|
|
|
+ "WirelessTableCellsDetection",
|
|
|
+ {"model_config_error": "config error for wireless_table_cells_detection_model!"},
|
|
|
+ )
|
|
|
+ self.wireless_table_cells_detection_model = self.create_model(wireless_table_cells_det_config)
|
|
|
+
|
|
|
+ self.use_ocr_model = config.get("use_ocr_model", True)
|
|
|
+ if self.use_ocr_model:
|
|
|
+ general_ocr_config = config.get("SubPipelines", {}).get(
|
|
|
+ "GeneralOCR",
|
|
|
+ {"pipeline_config_error": "config error for general_ocr_pipeline!"},
|
|
|
+ )
|
|
|
+ self.general_ocr_pipeline = self.create_pipeline(general_ocr_config)
|
|
|
+
|
|
|
+ self._crop_by_boxes = CropByBoxes()
|
|
|
+
|
|
|
+ self.batch_sampler = ImageBatchSampler(batch_size=1)
|
|
|
+ self.img_reader = ReadImage(format="BGR")
|
|
|
+
|
|
|
+ def get_model_settings(
|
|
|
+ self,
|
|
|
+ use_doc_orientation_classify: Optional[bool],
|
|
|
+ use_doc_unwarping: Optional[bool],
|
|
|
+ use_layout_detection: Optional[bool],
|
|
|
+ use_ocr_model: Optional[bool],
|
|
|
+ ) -> dict:
|
|
|
+ """
|
|
|
+ Get the model settings based on the provided parameters or default values.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
|
|
|
+ use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
|
|
|
+ use_layout_detection (Optional[bool]): Whether to use layout detection.
|
|
|
+ use_ocr_model (Optional[bool]): Whether to use OCR model.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict: A dictionary containing the model settings.
|
|
|
+ """
|
|
|
+ if use_doc_orientation_classify is None and use_doc_unwarping is None:
|
|
|
+ use_doc_preprocessor = self.use_doc_preprocessor
|
|
|
+ else:
|
|
|
+ if use_doc_orientation_classify is True or use_doc_unwarping is True:
|
|
|
+ use_doc_preprocessor = True
|
|
|
+ else:
|
|
|
+ use_doc_preprocessor = False
|
|
|
+
|
|
|
+ if use_layout_detection is None:
|
|
|
+ use_layout_detection = self.use_layout_detection
|
|
|
+
|
|
|
+ if use_ocr_model is None:
|
|
|
+ use_ocr_model = self.use_ocr_model
|
|
|
+
|
|
|
+ return dict(
|
|
|
+ use_doc_preprocessor=use_doc_preprocessor,
|
|
|
+ use_layout_detection=use_layout_detection,
|
|
|
+ use_ocr_model=use_ocr_model,
|
|
|
+ )
|
|
|
+
|
|
|
+ def check_model_settings_valid(
|
|
|
+ self,
|
|
|
+ model_settings: Dict,
|
|
|
+ overall_ocr_res: OCRResult,
|
|
|
+ layout_det_res: DetResult,
|
|
|
+ ) -> bool:
|
|
|
+ """
|
|
|
+ Check if the input parameters are valid based on the initialized models.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ model_settings (Dict): A dictionary containing input parameters.
|
|
|
+ overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline.
|
|
|
+ The overall OCR result with convert_points_to_boxes information.
|
|
|
+ layout_det_res (DetResult): The layout detection result.
|
|
|
+ Returns:
|
|
|
+ bool: True if all required models are initialized according to input parameters, False otherwise.
|
|
|
+ """
|
|
|
+
|
|
|
+ if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
|
|
|
+ logging.error(
|
|
|
+ "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
|
|
|
+ )
|
|
|
+ return False
|
|
|
+
|
|
|
+ if model_settings["use_layout_detection"]:
|
|
|
+ if layout_det_res is not None:
|
|
|
+ logging.error(
|
|
|
+ "The layout detection model has already been initialized, please set use_layout_detection=False"
|
|
|
+ )
|
|
|
+ return False
|
|
|
+
|
|
|
+ if not self.use_layout_detection:
|
|
|
+ logging.error(
|
|
|
+ "Set use_layout_detection, but the models for layout detection are not initialized."
|
|
|
+ )
|
|
|
+ return False
|
|
|
+
|
|
|
+ if model_settings["use_ocr_model"]:
|
|
|
+ if overall_ocr_res is not None:
|
|
|
+ logging.error(
|
|
|
+ "The OCR models have already been initialized, please set use_ocr_model=False"
|
|
|
+ )
|
|
|
+ return False
|
|
|
+
|
|
|
+ if not self.use_ocr_model:
|
|
|
+ logging.error(
|
|
|
+ "Set use_ocr_model, but the models for OCR are not initialized."
|
|
|
+ )
|
|
|
+ return False
|
|
|
+ else:
|
|
|
+ if overall_ocr_res is None:
|
|
|
+ logging.error("Set use_ocr_model=False, but no OCR results were found.")
|
|
|
+ return False
|
|
|
+ return True
|
|
|
+
|
|
|
+ def predict_doc_preprocessor_res(
|
|
|
+ self, image_array: np.ndarray, input_params: dict
|
|
|
+ ) -> tuple[DocPreprocessorResult, np.ndarray]:
|
|
|
+ """
|
|
|
+ Preprocess the document image based on input parameters.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_array (np.ndarray): The input image array.
|
|
|
+ input_params (dict): Dictionary containing preprocessing parameters.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple[DocPreprocessorResult, np.ndarray]: A tuple containing the preprocessing
|
|
|
+ result dictionary and the processed image array.
|
|
|
+ """
|
|
|
+ if input_params["use_doc_preprocessor"]:
|
|
|
+ use_doc_orientation_classify = input_params["use_doc_orientation_classify"]
|
|
|
+ use_doc_unwarping = input_params["use_doc_unwarping"]
|
|
|
+ doc_preprocessor_res = next(
|
|
|
+ self.doc_preprocessor_pipeline(
|
|
|
+ image_array,
|
|
|
+ use_doc_orientation_classify=use_doc_orientation_classify,
|
|
|
+ use_doc_unwarping=use_doc_unwarping,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ doc_preprocessor_image = doc_preprocessor_res["output_img"]
|
|
|
+ else:
|
|
|
+ doc_preprocessor_res = {}
|
|
|
+ doc_preprocessor_image = image_array
|
|
|
+ return doc_preprocessor_res, doc_preprocessor_image
|
|
|
+
|
|
|
+ def extract_results(self, pred, task):
|
|
|
+ if task == "cls":
|
|
|
+ return pred['label_names'][np.argmax(pred['scores'])]
|
|
|
+ elif task == "det":
|
|
|
+ threshold = 0.0
|
|
|
+ result = []
|
|
|
+ if 'boxes' in pred and isinstance(pred['boxes'], list):
|
|
|
+ for box in pred['boxes']:
|
|
|
+ if isinstance(box, dict) and 'score' in box and 'coordinate' in box:
|
|
|
+ score = box['score']
|
|
|
+ coordinate = box['coordinate']
|
|
|
+ if isinstance(score, float) and score > threshold:
|
|
|
+ result.append(coordinate)
|
|
|
+ return result
|
|
|
+ elif task == "table_stru":
|
|
|
+ return pred["structure"]
|
|
|
+ else:
|
|
|
+ return None
|
|
|
+
|
|
|
+ def predict_single_table_recognition_res(
|
|
|
+ self,
|
|
|
+ image_array: np.ndarray,
|
|
|
+ overall_ocr_res: OCRResult,
|
|
|
+ table_box: list,
|
|
|
+ flag_find_nei_text: bool = True,
|
|
|
+ ) -> SingleTableRecognitionResult:
|
|
|
+ """
|
|
|
+ Predict table recognition results from an image array, layout detection results, and OCR results.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_array (np.ndarray): The input image represented as a numpy array.
|
|
|
+ overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline.
|
|
|
+ The overall OCR results containing text recognition information.
|
|
|
+ table_box (list): The table box coordinates.
|
|
|
+ flag_find_nei_text (bool): Whether to find neighboring text.
|
|
|
+ Returns:
|
|
|
+ SingleTableRecognitionResult: single table recognition result.
|
|
|
+ """
|
|
|
+ table_cls_pred = next(self.table_cls_model(image_array))
|
|
|
+ table_cls_result = self.extract_results(table_cls_pred, "cls")
|
|
|
+ if table_cls_result == "wired_table":
|
|
|
+ table_structure_pred = next(self.wired_table_rec_model(image_array))
|
|
|
+ table_cells_pred = next(self.wired_table_cells_detection_model(image_array))
|
|
|
+ elif table_cls_result == "wireless_table":
|
|
|
+ table_structure_pred = next(self.wireless_table_rec_model(image_array))
|
|
|
+ table_cells_pred = next(self.wireless_table_cells_detection_model(image_array))
|
|
|
+ table_structure_result = self.extract_results(table_structure_pred, "table_stru")
|
|
|
+ table_cells_result = self.extract_results(table_cells_pred, "det")
|
|
|
+ single_table_recognition_res = get_table_recognition_res(
|
|
|
+ table_box, table_structure_result, table_cells_result, overall_ocr_res
|
|
|
+ )
|
|
|
+ neighbor_text = ""
|
|
|
+ if flag_find_nei_text:
|
|
|
+ match_idx_list = get_neighbor_boxes_idx(
|
|
|
+ overall_ocr_res["rec_boxes"], table_box
|
|
|
+ )
|
|
|
+ if len(match_idx_list) > 0:
|
|
|
+ for idx in match_idx_list:
|
|
|
+ neighbor_text += overall_ocr_res["rec_texts"][idx] + "; "
|
|
|
+ single_table_recognition_res["neighbor_text"] = neighbor_text
|
|
|
+ return single_table_recognition_res
|
|
|
+
|
|
|
+ def predict(
|
|
|
+ self,
|
|
|
+ input: str | list[str] | np.ndarray | list[np.ndarray],
|
|
|
+ use_doc_orientation_classify: Optional[bool] = None,
|
|
|
+ use_doc_unwarping: Optional[bool] = None,
|
|
|
+ use_layout_detection: Optional[bool] = None,
|
|
|
+ use_ocr_model: Optional[bool] = None,
|
|
|
+ overall_ocr_res: Optional[OCRResult] = None,
|
|
|
+ layout_det_res: Optional[DetResult] = None,
|
|
|
+ text_det_limit_side_len: Optional[int] = None,
|
|
|
+ text_det_limit_type: Optional[str] = None,
|
|
|
+ text_det_thresh: Optional[float] = None,
|
|
|
+ text_det_box_thresh: Optional[float] = None,
|
|
|
+ text_det_unclip_ratio: Optional[float] = None,
|
|
|
+ text_rec_score_thresh: Optional[float] = None,
|
|
|
+ **kwargs,
|
|
|
+ ) -> TableRecognitionResult:
|
|
|
+ """
|
|
|
+ This function predicts the layout parsing result for the given input.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) of pdf(s) to be processed.
|
|
|
+ use_layout_detection (bool): Whether to use layout detection.
|
|
|
+ use_doc_orientation_classify (bool): Whether to use document orientation classification.
|
|
|
+ use_doc_unwarping (bool): Whether to use document unwarping.
|
|
|
+ overall_ocr_res (OCRResult): The overall OCR result with convert_points_to_boxes information.
|
|
|
+ It will be used if it is not None and use_ocr_model is False.
|
|
|
+ layout_det_res (DetResult): The layout detection result.
|
|
|
+ It will be used if it is not None and use_layout_detection is False.
|
|
|
+ **kwargs: Additional keyword arguments.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ TableRecognitionResult: The predicted table recognition result.
|
|
|
+ """
|
|
|
+
|
|
|
+ model_settings = self.get_model_settings(
|
|
|
+ use_doc_orientation_classify,
|
|
|
+ use_doc_unwarping,
|
|
|
+ use_layout_detection,
|
|
|
+ use_ocr_model,
|
|
|
+ )
|
|
|
+
|
|
|
+ if not self.check_model_settings_valid(
|
|
|
+ model_settings, overall_ocr_res, layout_det_res
|
|
|
+ ):
|
|
|
+ yield {"error": "the input params for model settings are invalid!"}
|
|
|
+
|
|
|
+ for img_id, batch_data in enumerate(self.batch_sampler(input)):
|
|
|
+ if not isinstance(batch_data[0], str):
|
|
|
+ # TODO: add support input_pth for ndarray and pdf
|
|
|
+ input_path = f"{img_id}"
|
|
|
+ else:
|
|
|
+ input_path = batch_data[0]
|
|
|
+
|
|
|
+ image_array = self.img_reader(batch_data)[0]
|
|
|
+
|
|
|
+ if model_settings["use_doc_preprocessor"]:
|
|
|
+ doc_preprocessor_res = next(
|
|
|
+ self.doc_preprocessor_pipeline(
|
|
|
+ image_array,
|
|
|
+ use_doc_orientation_classify=use_doc_orientation_classify,
|
|
|
+ use_doc_unwarping=use_doc_unwarping,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ doc_preprocessor_res = {"output_img": image_array}
|
|
|
+
|
|
|
+ doc_preprocessor_image = doc_preprocessor_res["output_img"]
|
|
|
+
|
|
|
+ if model_settings["use_ocr_model"]:
|
|
|
+ overall_ocr_res = next(
|
|
|
+ self.general_ocr_pipeline(
|
|
|
+ doc_preprocessor_image,
|
|
|
+ text_det_limit_side_len=text_det_limit_side_len,
|
|
|
+ text_det_limit_type=text_det_limit_type,
|
|
|
+ text_det_thresh=text_det_thresh,
|
|
|
+ text_det_box_thresh=text_det_box_thresh,
|
|
|
+ text_det_unclip_ratio=text_det_unclip_ratio,
|
|
|
+ text_rec_score_thresh=text_rec_score_thresh,
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
+ table_res_list = []
|
|
|
+ table_region_id = 1
|
|
|
+ if not model_settings["use_layout_detection"] and layout_det_res is None:
|
|
|
+ layout_det_res = {}
|
|
|
+ img_height, img_width = doc_preprocessor_image.shape[:2]
|
|
|
+ table_box = [0, 0, img_width - 1, img_height - 1]
|
|
|
+ single_table_rec_res = self.predict_single_table_recognition_res(
|
|
|
+ doc_preprocessor_image,
|
|
|
+ overall_ocr_res,
|
|
|
+ table_box,
|
|
|
+ flag_find_nei_text=False,
|
|
|
+ )
|
|
|
+ single_table_rec_res["table_region_id"] = table_region_id
|
|
|
+ table_res_list.append(single_table_rec_res)
|
|
|
+ table_region_id += 1
|
|
|
+ else:
|
|
|
+ if model_settings["use_layout_detection"]:
|
|
|
+ layout_det_res = next(self.layout_det_model(doc_preprocessor_image))
|
|
|
+
|
|
|
+ for box_info in layout_det_res["boxes"]:
|
|
|
+ if box_info["label"].lower() in ["table"]:
|
|
|
+ crop_img_info = self._crop_by_boxes(image_array, [box_info])
|
|
|
+ crop_img_info = crop_img_info[0]
|
|
|
+ table_box = crop_img_info["box"]
|
|
|
+ single_table_rec_res = (
|
|
|
+ self.predict_single_table_recognition_res(
|
|
|
+ crop_img_info["img"], overall_ocr_res, table_box
|
|
|
+ )
|
|
|
+ )
|
|
|
+ single_table_rec_res["table_region_id"] = table_region_id
|
|
|
+ table_res_list.append(single_table_rec_res)
|
|
|
+ table_region_id += 1
|
|
|
+
|
|
|
+ single_img_res = {
|
|
|
+ "input_path": input_path,
|
|
|
+ "doc_preprocessor_res": doc_preprocessor_res,
|
|
|
+ "layout_det_res": layout_det_res,
|
|
|
+ "overall_ocr_res": overall_ocr_res,
|
|
|
+ "table_res_list": table_res_list,
|
|
|
+ "model_settings": model_settings,
|
|
|
+ }
|
|
|
+ yield TableRecognitionResult(single_img_res)
|