|
|
@@ -34,6 +34,42 @@ class Explanation(object):
|
|
|
# initialization for the explanation algorithm.
|
|
|
self.explain_algorithm = supported_algorithms[self.algorithm_name](
|
|
|
self.predict_fn, **kwargs
|
|
|
+ )#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+#you may not use this file except in compliance with the License.
|
|
|
+#You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+#Unless required by applicable law or agreed to in writing, software
|
|
|
+#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+#See the License for the specific language governing permissions and
|
|
|
+#limitations under the License.
|
|
|
+
|
|
|
+from .explanation_algorithms import CAM, LIME, NormLIME
|
|
|
+from .normlime_base import precompute_normlime_weights
|
|
|
+
|
|
|
+
|
|
|
+class Explanation(object):
|
|
|
+ """
|
|
|
+ Base class for all explanation algorithms.
|
|
|
+ """
|
|
|
+ def __init__(self, explanation_algorithm_name, predict_fn, label_names, **kwargs):
|
|
|
+ supported_algorithms = {
|
|
|
+ 'cam': CAM,
|
|
|
+ 'lime': LIME,
|
|
|
+ 'normlime': NormLIME
|
|
|
+ }
|
|
|
+
|
|
|
+ self.algorithm_name = explanation_algorithm_name.lower()
|
|
|
+ assert self.algorithm_name in supported_algorithms.keys()
|
|
|
+ self.predict_fn = predict_fn
|
|
|
+
|
|
|
+ # initialization for the explanation algorithm.
|
|
|
+ self.explain_algorithm = supported_algorithms[self.algorithm_name](
|
|
|
+ self.predict_fn, label_names, **kwargs
|
|
|
)
|
|
|
|
|
|
def explain(self, data_, visualization=True, save_to_disk=True, save_dir='./tmp'):
|
|
|
@@ -49,3 +85,18 @@ class Explanation(object):
|
|
|
|
|
|
"""
|
|
|
return self.explain_algorithm.explain(data_, visualization, save_to_disk, save_dir)
|
|
|
+
|
|
|
+
|
|
|
+ def explain(self, data_, visualization=True, save_to_disk=True, save_dir='./tmp'):
|
|
|
+ """
|
|
|
+
|
|
|
+ Args:
|
|
|
+ data_: data_ can be a path or numpy.ndarray.
|
|
|
+ visualization: whether to show using matplotlib.
|
|
|
+ save_to_disk: whether to save the figure in local disk.
|
|
|
+ save_dir: dir to save figure if save_to_disk is True.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+
|
|
|
+ """
|
|
|
+ return self.explain_algorithm.explain(data_, visualization, save_to_disk, save_dir)
|