|
|
@@ -0,0 +1,315 @@
|
|
|
+// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+//
|
|
|
+// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+// you may not use this file except in compliance with the License.
|
|
|
+// You may obtain a copy of the License at
|
|
|
+//
|
|
|
+// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+//
|
|
|
+// Unless required by applicable law or agreed to in writing, software
|
|
|
+// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+// See the License for the specific language governing permissions and
|
|
|
+// limitations under the License.
|
|
|
+
|
|
|
+#include <glog/logging.h>
|
|
|
+#include <omp.h>
|
|
|
+
|
|
|
+#include <algorithm>
|
|
|
+#include <chrono> // NOLINT
|
|
|
+#include <iostream>
|
|
|
+#include <vector>
|
|
|
+#include <utility>
|
|
|
+#include <limits>
|
|
|
+
|
|
|
+#include <opencv2/opencv.hpp>
|
|
|
+#include <opencv2/highgui.hpp>
|
|
|
+#include <opencv2/core/core.hpp>
|
|
|
+
|
|
|
+#include "meter_reader/global.h"
|
|
|
+#include "meter_reader/postprocess.h"
|
|
|
+#include "include/paddlex/paddlex.h"
|
|
|
+#include "include/paddlex/visualize.h"
|
|
|
+
|
|
|
+using namespace std::chrono; // NOLINT
|
|
|
+
|
|
|
+DEFINE_string(det_model_dir, "", "Path of detection inference model");
|
|
|
+DEFINE_string(seg_model_dir, "", "Path of segmentation inference model");
|
|
|
+DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
|
|
|
+DEFINE_bool(use_trt, false, "Infering with TensorRT");
|
|
|
+DEFINE_bool(use_camera, false, "Infering with Camera");
|
|
|
+DEFINE_bool(use_erode, true, "Eroding predicted label map");
|
|
|
+DEFINE_int32(gpu_id, 0, "GPU card id");
|
|
|
+DEFINE_int32(camera_id, 0, "Camera id");
|
|
|
+DEFINE_int32(thread_num,
|
|
|
+ omp_get_num_procs(),
|
|
|
+ "Number of preprocessing threads");
|
|
|
+DEFINE_int32(erode_kernel, true, "Eroding kernel size");
|
|
|
+DEFINE_int32(seg_batch_size, 2, "Batch size of segmentation infering");
|
|
|
+DEFINE_string(det_key, "", "Detector key of encryption");
|
|
|
+DEFINE_string(seg_key, "", "Segmenter model key of encryption");
|
|
|
+DEFINE_string(image, "", "Path of test image file");
|
|
|
+DEFINE_string(image_list, "", "Path of test image list file");
|
|
|
+DEFINE_string(save_dir, "output", "Path to save visualized image");
|
|
|
+DEFINE_double(score_threshold, 0.5, "Detected bbox whose score is lower than this threshlod is filtered");
|
|
|
+
|
|
|
+void predict(const cv::Mat &input_image, PaddleX::Model *det_model,
|
|
|
+ PaddleX::Model *seg_model, const std::string save_dir,
|
|
|
+ const std::string image_path, const bool use_erode,
|
|
|
+ const int erode_kernel, const int thread_num,
|
|
|
+ const int seg_batch_size, const double threshold) {
|
|
|
+ PaddleX::DetResult det_result;
|
|
|
+ det_model->predict(input_image, &det_result);
|
|
|
+
|
|
|
+ PaddleX::DetResult filter_result;
|
|
|
+ int num_bboxes = det_result.boxes.size();
|
|
|
+ for (int i = 0; i < num_bboxes; ++i) {
|
|
|
+ double score = det_result.boxes[i].score;
|
|
|
+ if (score > threshold || score == threshold) {
|
|
|
+ PaddleX::Box box;
|
|
|
+ box.category_id = det_result.boxes[i].category_id;
|
|
|
+ box.category = det_result.boxes[i].category;
|
|
|
+ box.score = det_result.boxes[i].score;
|
|
|
+ box.coordinate = det_result.boxes[i].coordinate;
|
|
|
+ filter_result.boxes.push_back(std::move(box));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ int meter_num = filter_result.boxes.size();
|
|
|
+ if (!meter_num) {
|
|
|
+ std::cout << "Don't find any meter." << std::endl;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<std::vector<int64_t>> seg_result(meter_num);
|
|
|
+ for (int i = 0; i < meter_num; i += seg_batch_size) {
|
|
|
+ int im_vec_size =
|
|
|
+ std::min(static_cast<int>(meter_num), i + seg_batch_size);
|
|
|
+ std::vector<cv::Mat> meters_image(im_vec_size - i);
|
|
|
+ int batch_thread_num = std::min(thread_num, im_vec_size - i);
|
|
|
+ #pragma omp parallel for num_threads(batch_thread_num)
|
|
|
+ for (int j = i; j < im_vec_size; ++j) {
|
|
|
+ int left = static_cast<int>(filter_result.boxes[j].coordinate[0]);
|
|
|
+ int top = static_cast<int>(filter_result.boxes[j].coordinate[1]);
|
|
|
+ int width = static_cast<int>(filter_result.boxes[j].coordinate[2]);
|
|
|
+ int height = static_cast<int>(filter_result.boxes[j].coordinate[3]);
|
|
|
+ int right = left + width - 1;
|
|
|
+ int bottom = top + height - 1;
|
|
|
+
|
|
|
+ cv::Mat sub_image = input_image(
|
|
|
+ cv::Range(top, bottom + 1), cv::Range(left, right + 1));
|
|
|
+ float scale_x =
|
|
|
+ static_cast<float>(METER_SHAPE[0]) / static_cast<float>(sub_image.cols);
|
|
|
+ float scale_y =
|
|
|
+ static_cast<float>(METER_SHAPE[1]) / static_cast<float>(sub_image.rows);
|
|
|
+ cv::resize(sub_image,
|
|
|
+ sub_image,
|
|
|
+ cv::Size(),
|
|
|
+ scale_x,
|
|
|
+ scale_y,
|
|
|
+ cv::INTER_LINEAR);
|
|
|
+ meters_image[j - i] = std::move(sub_image);
|
|
|
+ }
|
|
|
+ std::vector<PaddleX::SegResult> batch_result(im_vec_size - i);
|
|
|
+ seg_model->predict(meters_image, &batch_result, batch_thread_num);
|
|
|
+ #pragma omp parallel for num_threads(batch_thread_num)
|
|
|
+ for (int j = i; j < im_vec_size; ++j) {
|
|
|
+ if (use_erode) {
|
|
|
+ cv::Mat kernel(4, 4, CV_8U, cv::Scalar(1));
|
|
|
+ std::vector<uint8_t> label_map(
|
|
|
+ batch_result[j - i].label_map.data.begin(),
|
|
|
+ batch_result[j - i].label_map.data.end());
|
|
|
+ cv::Mat mask(batch_result[j - i].label_map.shape[0],
|
|
|
+ batch_result[j - i].label_map.shape[1],
|
|
|
+ CV_8UC1,
|
|
|
+ label_map.data());
|
|
|
+ cv::erode(mask, mask, kernel);
|
|
|
+ std::vector<int64_t> map;
|
|
|
+ if (mask.isContinuous()) {
|
|
|
+ map.assign(mask.data, mask.data + mask.total() * mask.channels());
|
|
|
+ } else {
|
|
|
+ for (int r = 0; r < mask.rows; r++) {
|
|
|
+ map.insert(map.end(),
|
|
|
+ mask.ptr<int64_t>(r),
|
|
|
+ mask.ptr<int64_t>(r) + mask.cols * mask.channels());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ seg_result[j] = std::move(map);
|
|
|
+ } else {
|
|
|
+ seg_result[j] = std::move(batch_result[j - i].label_map.data);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<READ_RESULT> read_results(meter_num);
|
|
|
+ int all_thread_num = std::min(thread_num, meter_num);
|
|
|
+ read_process(seg_result, &read_results, all_thread_num);
|
|
|
+
|
|
|
+ cv::Mat output_image = input_image.clone();
|
|
|
+ for (int i = 0; i < meter_num; i++) {
|
|
|
+ float result = 0;;
|
|
|
+ if (read_results[i].scale_num > TYPE_THRESHOLD) {
|
|
|
+ result = read_results[i].scales * meter_config[0].scale_value;
|
|
|
+ } else {
|
|
|
+ result = read_results[i].scales * meter_config[1].scale_value;
|
|
|
+ }
|
|
|
+ std::cout << "-- Meter " << i
|
|
|
+ << " -- result: " << result
|
|
|
+ << " --" << std::endl;
|
|
|
+
|
|
|
+ int lx = static_cast<int>(filter_result.boxes[i].coordinate[0]);
|
|
|
+ int ly = static_cast<int>(filter_result.boxes[i].coordinate[1]);
|
|
|
+ int w = static_cast<int>(filter_result.boxes[i].coordinate[2]);
|
|
|
+ int h = static_cast<int>(filter_result.boxes[i].coordinate[3]);
|
|
|
+
|
|
|
+ cv::Rect bounding_box = cv::Rect(lx, ly, w, h) &
|
|
|
+ cv::Rect(0, 0, output_image.cols, output_image.rows);
|
|
|
+ if (w > 0 && h > 0) {
|
|
|
+ cv::Scalar color = cv::Scalar(237, 189, 101);
|
|
|
+ cv::rectangle(output_image, bounding_box, color);
|
|
|
+ cv::rectangle(output_image,
|
|
|
+ cv::Point2d(lx, ly),
|
|
|
+ cv::Point2d(lx + w, ly - 30),
|
|
|
+ color, -1);
|
|
|
+
|
|
|
+ std::string class_name = "Meter";
|
|
|
+ cv::putText(output_image,
|
|
|
+ class_name + " " + std::to_string(result),
|
|
|
+ cv::Point2d(lx, ly-5),
|
|
|
+ cv::FONT_HERSHEY_SIMPLEX,
|
|
|
+ 1, cv::Scalar(255, 255, 255), 2);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ cv::Mat result_image;
|
|
|
+ cv::Size resize_size(RESULT_SHAPE[0], RESULT_SHAPE[1]);
|
|
|
+ cv::resize(output_image, result_image, resize_size, 0, 0, cv::INTER_LINEAR);
|
|
|
+ std::string save_path = PaddleX::generate_save_path(save_dir, image_path);
|
|
|
+ cv::imwrite(save_path, result_image);
|
|
|
+
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+int main(int argc, char **argv) {
|
|
|
+ google::ParseCommandLineFlags(&argc, &argv, true);
|
|
|
+ if (FLAGS_det_model_dir == "") {
|
|
|
+ std::cerr << "--det_model_dir need to be defined" << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ if (FLAGS_seg_model_dir == "") {
|
|
|
+ std::cerr << "--seg_model_dir need to be defined" << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ if (FLAGS_image == "" & FLAGS_image_list == "" & FLAGS_use_camera == false) {
|
|
|
+ std::cerr << "--image or --image_list need to be defined "
|
|
|
+ << "when the camera is not been used" << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 加载模型
|
|
|
+ PaddleX::Model det_model;
|
|
|
+ det_model.Init(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_use_trt,
|
|
|
+ FLAGS_gpu_id, FLAGS_det_key);
|
|
|
+ PaddleX::Model seg_model;
|
|
|
+ seg_model.Init(FLAGS_seg_model_dir, FLAGS_use_gpu, FLAGS_use_trt,
|
|
|
+ FLAGS_gpu_id, FLAGS_seg_key);
|
|
|
+
|
|
|
+ double total_running_time_s = 0.0;
|
|
|
+ double total_imread_time_s = 0.0;
|
|
|
+ int imgs = 1;
|
|
|
+ if (FLAGS_use_camera) {
|
|
|
+ cv::VideoCapture cap(FLAGS_camera_id);
|
|
|
+ cap.set(CV_CAP_PROP_FRAME_WIDTH, IMAGE_SHAPE[0]);
|
|
|
+ cap.set(CV_CAP_PROP_FRAME_HEIGHT, IMAGE_SHAPE[1]);
|
|
|
+ if (!cap.isOpened()) {
|
|
|
+ std::cout << "Open the camera unsuccessfully." << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ std::cout << "Open the camera successfully." << std::endl;
|
|
|
+
|
|
|
+ while (1) {
|
|
|
+ auto start = system_clock::now();
|
|
|
+ cv::Mat im;
|
|
|
+ cap >> im;
|
|
|
+ auto imread_end = system_clock::now();
|
|
|
+ std::cout << "-------------------------" << std::endl;
|
|
|
+ std::cout << "Got a camera image." << std::endl;
|
|
|
+ std::string ext_name = ".jpg";
|
|
|
+ predict(im, &det_model, &seg_model, FLAGS_save_dir,
|
|
|
+ std::to_string(imgs) + ext_name, FLAGS_use_erode,
|
|
|
+ FLAGS_erode_kernel, FLAGS_thread_num,
|
|
|
+ FLAGS_seg_batch_size, FLAGS_score_threshold);
|
|
|
+ imgs++;
|
|
|
+ auto imread_duration = duration_cast<microseconds>(imread_end - start);
|
|
|
+ total_imread_time_s += static_cast<double>(imread_duration.count()) *
|
|
|
+ microseconds::period::num /
|
|
|
+ microseconds::period::den;
|
|
|
+
|
|
|
+ auto end = system_clock::now();
|
|
|
+ auto duration = duration_cast<microseconds>(end - start);
|
|
|
+ total_running_time_s += static_cast<double>(duration.count()) *
|
|
|
+ microseconds::period::num /
|
|
|
+ microseconds::period::den;
|
|
|
+ }
|
|
|
+ cap.release();
|
|
|
+ cv::destroyAllWindows();
|
|
|
+ } else {
|
|
|
+ if (FLAGS_image_list != "") {
|
|
|
+ std::ifstream inf(FLAGS_image_list);
|
|
|
+ if (!inf) {
|
|
|
+ std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ std::string image_path;
|
|
|
+ while (getline(inf, image_path)) {
|
|
|
+ auto start = system_clock::now();
|
|
|
+ cv::Mat im = cv::imread(image_path, 1);
|
|
|
+ imgs++;
|
|
|
+ auto imread_end = system_clock::now();
|
|
|
+
|
|
|
+ predict(im, &det_model, &seg_model, FLAGS_save_dir,
|
|
|
+ image_path, FLAGS_use_erode, FLAGS_erode_kernel,
|
|
|
+ FLAGS_thread_num, FLAGS_seg_batch_size,
|
|
|
+ FLAGS_score_threshold);
|
|
|
+
|
|
|
+ auto imread_duration = duration_cast<microseconds>(imread_end - start);
|
|
|
+ total_imread_time_s += static_cast<double>(imread_duration.count()) *
|
|
|
+ microseconds::period::num /
|
|
|
+ microseconds::period::den;
|
|
|
+
|
|
|
+ auto end = system_clock::now();
|
|
|
+ auto duration = duration_cast<microseconds>(end - start);
|
|
|
+ total_running_time_s += static_cast<double>(duration.count()) *
|
|
|
+ microseconds::period::num /
|
|
|
+ microseconds::period::den;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ auto start = system_clock::now();
|
|
|
+ cv::Mat im = cv::imread(FLAGS_image, 1);
|
|
|
+ auto imread_end = system_clock::now();
|
|
|
+
|
|
|
+ predict(im, &det_model, &seg_model, FLAGS_save_dir,
|
|
|
+ FLAGS_image, FLAGS_use_erode, FLAGS_erode_kernel,
|
|
|
+ FLAGS_thread_num, FLAGS_seg_batch_size,
|
|
|
+ FLAGS_score_threshold);
|
|
|
+
|
|
|
+ auto imread_duration = duration_cast<microseconds>(imread_end - start);
|
|
|
+ total_imread_time_s += static_cast<double>(imread_duration.count()) *
|
|
|
+ microseconds::period::num /
|
|
|
+ microseconds::period::den;
|
|
|
+
|
|
|
+ auto end = system_clock::now();
|
|
|
+ auto duration = duration_cast<microseconds>(end - start);
|
|
|
+ total_running_time_s += static_cast<double>(duration.count()) *
|
|
|
+ microseconds::period::num /
|
|
|
+ microseconds::period::den;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ std::cout << "Total running time: " << total_running_time_s
|
|
|
+ << " s, average running time: " << total_running_time_s / imgs
|
|
|
+ << " s/img, total read img time: " << total_imread_time_s
|
|
|
+ << " s, average read time: " << total_imread_time_s / imgs
|
|
|
+ << " s/img" << std::endl;
|
|
|
+ return 0;
|
|
|
+}
|