Эх сурвалжийг харах

update PaddleDetection submodule to clean fluid

FlyingQianMM 3 жил өмнө
parent
commit
5960e5deca

+ 1 - 1
PaddleDetection

@@ -1 +1 @@
-Subproject commit 692d732994660ceba82c75034c802eb1138239cf
+Subproject commit c103d0250719ec7914cbd9978ee40f60026de0c8

+ 0 - 104
paddlex/cv/models/utils/third_party/cocoapi/coco.py

@@ -1,104 +0,0 @@
-# This file is made availabel under the Apache license
-# This file is based on code availabel under Simplified BSD Licens:
-#   https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305
-#
-# Copyright (c) 2014, Piotr Dollar and Tsung-Yi Lin
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are met: 
-# 
-# 1. Redistributions of source code must retain the above copyright notice, this
-#    list of conditions and the following disclaimer. 
-# 2. Redistributions in binary form must reproduce the above copyright notice,
-#    this list of conditions and the following disclaimer in the documentation
-#    and/or other materials provided with the distribution. 
-# 
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
-# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-# 
-# The views and conclusions contained in the software and documentation are those
-# of the authors and should not be interpreted as representing official policies, 
-# either expressed or implied, of the FreeBSD Project.
-
-
-def loadRes(coco_obj, anns):
-    """
-    Load result file and return a result api object.
-    :param   resFile (str)     : file name of result file
-    :return: res (obj)         : result api object
-    """
-
-    # This function has the same functionality as pycocotools.COCO.loadRes,
-    # except that the input anns is list of results rather than a json file.
-    # Refer to
-    # https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305,
-
-    # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
-    # or matplotlib.backends is imported for the first time
-    # pycocotools import matplotlib
-    import matplotlib
-    matplotlib.use('Agg')
-    from pycocotools.coco import COCO
-    import pycocotools.mask as maskUtils
-    import time
-    res = COCO()
-    res.dataset['images'] = [img for img in coco_obj.dataset['images']]
-
-    tic = time.time()
-    assert type(anns) == list, 'results in not an array of objects'
-    annsImgIds = [ann['image_id'] for ann in anns]
-    assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \
-        'Results do not correspond to current coco set'
-    if 'caption' in anns[0]:
-        imgIds = set([img['id'] for img in res.dataset['images']]) & set(
-            [ann['image_id'] for ann in anns])
-        res.dataset['images'] = [
-            img for img in res.dataset['images'] if img['id'] in imgIds
-        ]
-        for id, ann in enumerate(anns):
-            ann['id'] = id + 1
-    elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
-        res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
-            'categories'])
-        for id, ann in enumerate(anns):
-            bb = ann['bbox']
-            x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
-            if not 'segmentation' in ann:
-                ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
-            ann['area'] = bb[2] * bb[3]
-            ann['id'] = id + 1
-            ann['iscrowd'] = 0
-    elif 'segmentation' in anns[0]:
-        res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
-            'categories'])
-        for id, ann in enumerate(anns):
-            # now only support compressed RLE format as segmentation results
-            ann['area'] = maskUtils.area(ann['segmentation'])
-            if not 'bbox' in ann:
-                ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
-            ann['id'] = id + 1
-            ann['iscrowd'] = 0
-    elif 'keypoints' in anns[0]:
-        res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
-            'categories'])
-        for id, ann in enumerate(anns):
-            s = ann['keypoints']
-            x = s[0::3]
-            y = s[1::3]
-            x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
-            ann['area'] = (x1 - x0) * (y1 - y0)
-            ann['id'] = id + 1
-            ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
-
-    res.dataset['annotations'] = anns
-    res.createIndex()
-    return res

+ 4 - 4
paddlex/ppdet/data/transform/autoaugment_utils.py

@@ -111,8 +111,8 @@ def policy_v2():
         [('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
         [('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6),
          ('Rotate_BBox', 0.6, 6)],
-        [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4), ('Cutout', 0.2, 8)
-         ],
+        [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4),
+         ('Cutout', 0.2, 8)],
         [('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6),
          ('ShearY_BBox', 0.6, 8)],
         [('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
@@ -1392,8 +1392,8 @@ def _translate_level_to_arg(level, translate_const):
 def _bbox_cutout_level_to_arg(level, hparams):
     cutout_pad_fraction = (
         level / _MAX_LEVEL) * 0.75  # hparams.cutout_max_pad_fraction
-    return (cutout_pad_fraction, False
-            )  # hparams.cutout_bbox_replace_with_mean
+    return (cutout_pad_fraction,
+            False)  # hparams.cutout_bbox_replace_with_mean
 
 
 def level_to_arg(hparams):