|
|
@@ -1,104 +0,0 @@
|
|
|
-# This file is made availabel under the Apache license
|
|
|
-# This file is based on code availabel under Simplified BSD Licens:
|
|
|
-# https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305
|
|
|
-#
|
|
|
-# Copyright (c) 2014, Piotr Dollar and Tsung-Yi Lin
|
|
|
-# All rights reserved.
|
|
|
-#
|
|
|
-# Redistribution and use in source and binary forms, with or without
|
|
|
-# modification, are permitted provided that the following conditions are met:
|
|
|
-#
|
|
|
-# 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
-# list of conditions and the following disclaimer.
|
|
|
-# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
-# this list of conditions and the following disclaimer in the documentation
|
|
|
-# and/or other materials provided with the distribution.
|
|
|
-#
|
|
|
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
|
-# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
-# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
|
|
-# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
-# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
-# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
|
-# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
-#
|
|
|
-# The views and conclusions contained in the software and documentation are those
|
|
|
-# of the authors and should not be interpreted as representing official policies,
|
|
|
-# either expressed or implied, of the FreeBSD Project.
|
|
|
-
|
|
|
-
|
|
|
-def loadRes(coco_obj, anns):
|
|
|
- """
|
|
|
- Load result file and return a result api object.
|
|
|
- :param resFile (str) : file name of result file
|
|
|
- :return: res (obj) : result api object
|
|
|
- """
|
|
|
-
|
|
|
- # This function has the same functionality as pycocotools.COCO.loadRes,
|
|
|
- # except that the input anns is list of results rather than a json file.
|
|
|
- # Refer to
|
|
|
- # https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305,
|
|
|
-
|
|
|
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
|
|
|
- # or matplotlib.backends is imported for the first time
|
|
|
- # pycocotools import matplotlib
|
|
|
- import matplotlib
|
|
|
- matplotlib.use('Agg')
|
|
|
- from pycocotools.coco import COCO
|
|
|
- import pycocotools.mask as maskUtils
|
|
|
- import time
|
|
|
- res = COCO()
|
|
|
- res.dataset['images'] = [img for img in coco_obj.dataset['images']]
|
|
|
-
|
|
|
- tic = time.time()
|
|
|
- assert type(anns) == list, 'results in not an array of objects'
|
|
|
- annsImgIds = [ann['image_id'] for ann in anns]
|
|
|
- assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \
|
|
|
- 'Results do not correspond to current coco set'
|
|
|
- if 'caption' in anns[0]:
|
|
|
- imgIds = set([img['id'] for img in res.dataset['images']]) & set(
|
|
|
- [ann['image_id'] for ann in anns])
|
|
|
- res.dataset['images'] = [
|
|
|
- img for img in res.dataset['images'] if img['id'] in imgIds
|
|
|
- ]
|
|
|
- for id, ann in enumerate(anns):
|
|
|
- ann['id'] = id + 1
|
|
|
- elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
|
|
|
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
|
|
|
- 'categories'])
|
|
|
- for id, ann in enumerate(anns):
|
|
|
- bb = ann['bbox']
|
|
|
- x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
|
|
|
- if not 'segmentation' in ann:
|
|
|
- ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
|
|
|
- ann['area'] = bb[2] * bb[3]
|
|
|
- ann['id'] = id + 1
|
|
|
- ann['iscrowd'] = 0
|
|
|
- elif 'segmentation' in anns[0]:
|
|
|
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
|
|
|
- 'categories'])
|
|
|
- for id, ann in enumerate(anns):
|
|
|
- # now only support compressed RLE format as segmentation results
|
|
|
- ann['area'] = maskUtils.area(ann['segmentation'])
|
|
|
- if not 'bbox' in ann:
|
|
|
- ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
|
|
|
- ann['id'] = id + 1
|
|
|
- ann['iscrowd'] = 0
|
|
|
- elif 'keypoints' in anns[0]:
|
|
|
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
|
|
|
- 'categories'])
|
|
|
- for id, ann in enumerate(anns):
|
|
|
- s = ann['keypoints']
|
|
|
- x = s[0::3]
|
|
|
- y = s[1::3]
|
|
|
- x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
|
|
|
- ann['area'] = (x1 - x0) * (y1 - y0)
|
|
|
- ann['id'] = id + 1
|
|
|
- ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
|
|
|
-
|
|
|
- res.dataset['annotations'] = anns
|
|
|
- res.createIndex()
|
|
|
- return res
|