Selaa lähdekoodia

Create labelme2voc.py

LaraStuStu 5 vuotta sitten
vanhempi
commit
5b0ba4c93f
1 muutettua tiedostoa jossa 133 lisäystä ja 0 poistoa
  1. 133 0
      DataAnnotation/labelme/examples/bbox_detection/labelme2voc.py

+ 133 - 0
DataAnnotation/labelme/examples/bbox_detection/labelme2voc.py

@@ -0,0 +1,133 @@
+#!/usr/bin/env python
+
+from __future__ import print_function
+
+import argparse
+import glob
+import json
+import os
+import os.path as osp
+import sys
+
+try:
+    import lxml.builder
+    import lxml.etree
+except ImportError:
+    print('Please install lxml:\n\n    pip install lxml\n')
+    sys.exit(1)
+import numpy as np
+import PIL.Image
+
+import labelme
+
+
+def main():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+    parser.add_argument('input_dir', help='input annotated directory')
+    parser.add_argument('output_dir', help='output dataset directory')
+    parser.add_argument('--labels', help='labels file', required=True)
+    args = parser.parse_args()
+
+    if osp.exists(args.output_dir):
+        print('Output directory already exists:', args.output_dir)
+        sys.exit(1)
+    os.makedirs(args.output_dir)
+    os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
+    os.makedirs(osp.join(args.output_dir, 'Annotations'))
+    os.makedirs(osp.join(args.output_dir, 'AnnotationsVisualization'))
+    print('Creating dataset:', args.output_dir)
+
+    class_names = []
+    class_name_to_id = {}
+    for i, line in enumerate(open(args.labels).readlines()):
+        class_id = i - 1  # starts with -1
+        class_name = line.strip()
+        class_name_to_id[class_name] = class_id
+        if class_id == -1:
+            assert class_name == '__ignore__'
+            continue
+        elif class_id == 0:
+            assert class_name == '_background_'
+        class_names.append(class_name)
+    class_names = tuple(class_names)
+    print('class_names:', class_names)
+    out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
+    with open(out_class_names_file, 'w') as f:
+        f.writelines('\n'.join(class_names))
+    print('Saved class_names:', out_class_names_file)
+
+    for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
+        print('Generating dataset from:', label_file)
+        with open(label_file) as f:
+            data = json.load(f)
+        base = osp.splitext(osp.basename(label_file))[0]
+        out_img_file = osp.join(
+            args.output_dir, 'JPEGImages', base + '.jpg')
+        out_xml_file = osp.join(
+            args.output_dir, 'Annotations', base + '.xml')
+        out_viz_file = osp.join(
+            args.output_dir, 'AnnotationsVisualization', base + '.jpg')
+
+        img_file = osp.join(osp.dirname(label_file), data['imagePath'])
+        img = np.asarray(PIL.Image.open(img_file))
+        PIL.Image.fromarray(img).save(out_img_file)
+
+        maker = lxml.builder.ElementMaker()
+        xml = maker.annotation(
+            maker.folder(),
+            maker.filename(base + '.jpg'),
+            maker.database(),    # e.g., The VOC2007 Database
+            maker.annotation(),  # e.g., Pascal VOC2007
+            maker.image(),       # e.g., flickr
+            maker.size(
+                maker.height(str(img.shape[0])),
+                maker.width(str(img.shape[1])),
+                maker.depth(str(img.shape[2])),
+            ),
+            maker.segmented(),
+        )
+
+        bboxes = []
+        labels = []
+        for shape in data['shapes']:
+            if shape['shape_type'] != 'rectangle':
+                print('Skipping shape: label={label}, shape_type={shape_type}'
+                      .format(**shape))
+                continue
+
+            class_name = shape['label']
+            class_id = class_names.index(class_name)
+
+            (xmin, ymin), (xmax, ymax) = shape['points']
+            bboxes.append([xmin, ymin, xmax, ymax])
+            labels.append(class_id)
+
+            xml.append(
+                maker.object(
+                    maker.name(shape['label']),
+                    maker.pose(),
+                    maker.truncated(),
+                    maker.difficult(),
+                    maker.bndbox(
+                        maker.xmin(str(xmin)),
+                        maker.ymin(str(ymin)),
+                        maker.xmax(str(xmax)),
+                        maker.ymax(str(ymax)),
+                    ),
+                )
+            )
+
+        captions = [class_names[l] for l in labels]
+        viz = labelme.utils.draw_instances(
+            img, bboxes, labels, captions=captions
+        )
+        PIL.Image.fromarray(viz).save(out_viz_file)
+
+        with open(out_xml_file, 'wb') as f:
+            f.write(lxml.etree.tostring(xml, pretty_print=True))
+
+
+if __name__ == '__main__':
+    main()