AmberC0209 пре 1 година
родитељ
комит
63a6354617

+ 18 - 14
README.md

@@ -21,7 +21,7 @@
 
 ## 🔍 简介
 
-PaddleX 3.0 是基于飞桨框架构建的一站式全流程开发工具,它集成了众多**开箱即用的预训练模型**,可以实现模型从训练到推理的**全流程开发**,支持国内外**多款主流硬件**,助力AI 开发者进行产业实践。  
+PaddleX 3.0 是基于飞桨框架构建的低代码全流程开发工具,它集成了众多**开箱即用的预训练模型**,可以实现模型从训练到推理的**全流程开发**,支持国内外**多款主流硬件**,助力AI 开发者进行产业实践。  
 
 |                                                            **通用图像分类**                                                            |                                                            **图像多标签分类**                                                            |                                                            **通用目标检测**                                                            |                                                            **通用实例分割**                                                            |
 |:--------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:|
@@ -485,20 +485,20 @@ for res in output:
 
 * [📑 PaddleX 产线使用概览](./docs/pipeline_usage/pipeline_develop_guide.md)
 
-* <details>
+* <details open>
     <summary> <b> 📝 文本图像智能分析 </b></summary>
 
    * [📄 文档场景信息抽取v3产线使用教程](./docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction.md)
   </details>
 
-* <details>
+* <details open>
     <summary> <b> 🔍 OCR </b></summary>
 
     * [📜 通用 OCR 产线使用教程](./docs/pipeline_usage/tutorials/ocr_pipelines/OCR.md)
     * [📊 表格识别产线使用教程](./docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition.md)
   </details>
 
-* <details>
+* <details open>
     <summary> <b> 🎥 计算机视觉 </b></summary>
 
    * [🖼️ 通用图像分类产线使用教程](./docs/pipeline_usage/tutorials/cv_pipelines/image_classification.md)
@@ -510,7 +510,7 @@ for res in output:
    * [🖼️ 图像异常检测产线使用教程](./docs/pipeline_usage/tutorials/cv_pipelines/image_anomaly_detection.md)
   
 
-* <details>
+* <details open>
     <summary> <b> ⏱️ 时序分析</b> </summary>
 
    * [📈 通用时序预测产线使用教程](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_forecasting.md)
@@ -532,7 +532,7 @@ for res in output:
 <details open>
 <summary> <b> ⚙️ 单功能模块使用 </b></summary>
 
-* <details>
+* <details open>
   <summary> <b> 🔍 OCR </b></summary>
 
   * [📝 文本检测模块使用教程](./docs/module_usage/tutorials/ocr_modules/text_detection.md)
@@ -546,7 +546,7 @@ for res in output:
   
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🖼️ 图像分类 </b></summary>
 
   * [📂 图像分类模块使用教程](./docs/module_usage/tutorials/cv_modules/image_classification.md)
@@ -556,13 +556,13 @@ for res in output:
 
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🏞️ 图像特征 </b></summary>
 
     * [🔗 通用图像特征模块使用教程](./docs/module_usage/tutorials/cv_modules/image_feature.md)
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🎯 目标检测 </b></summary>
 
   * [🎯 目标检测模块使用教程](./docs/module_usage/tutorials/cv_modules/object_detection.md)
@@ -574,7 +574,7 @@ for res in output:
 
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🖼️ 图像分割 </b></summary>
 
   * [🗺️ 语义分割模块使用教程](./docs/module_usage/tutorials/cv_modules/semantic_segmentation.md)
@@ -582,7 +582,7 @@ for res in output:
   * [🚨 图像异常检测模块使用教程](./docs/module_usage/tutorials/cv_modules/anomaly_detection.md)
   </details>
 
-* <details>
+* <details open>
   <summary> <b> ⏱️ 时序分析 </b></summary>
 
   * [📈 时序预测模块使用教程](./docs/module_usage/tutorials/time_series_modules/time_series_forecasting.md)
@@ -600,7 +600,7 @@ for res in output:
 
 </details>
 
-<details>
+<details open>
   <summary> <b> 🏗️ 模型产线部署 </b></summary>
 
   * [🚀 PaddleX 高性能部署指南](./docs/pipeline_deploy/high_performance_deploy.md)
@@ -608,14 +608,18 @@ for res in output:
   * [📱 PaddleX 端侧部署指南](./docs/pipeline_deploy/lite_deploy.md)
 
 </details>
-<details>
+<details open>
   <summary> <b> 🖥️ 多硬件使用 </b></summary>
   
   * [⚙️ 多硬件使用指南](./docs/other_devices_support/installation_other_devices.md)
+  * [⚙️ 海光 DCU 飞桨安装教程](./docs/other_devices_support/paddlepaddle_install_DCU.md)
+  * [⚙️ 寒武纪 MLU 飞桨安装教程](./docs/other_devices_support/paddlepaddle_install_MLU.md)
+  * [⚙️ 昇腾 NPU 飞桨安装教程](./docs/other_devices_support/paddlepaddle_install_NPU.md)
+  * [⚙️ 昆仑 XPU 飞桨安装教程](./docs/other_devices_support/paddlepaddle_install_XPU.md)
 
 </details>
 
-<details>
+<details open>
   <summary> <b> 📝 产业实践教程&范例 </b></summary>
 
 * [🖼️ 通用图像分类模型产线———垃圾分类教程](./docs/practical_tutorials/image_classification_garbage_tutorial.md)

+ 12 - 12
README_en.md

@@ -477,20 +477,20 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
 
 * [📑 PaddleX pipeline Usage Overview](./docs/pipeline_usage/pipeline_develop_guide_en.md)
 
-* <details>
+* <details open>
     <summary> <b> 📝 Text and Image Intelligent Analysis </b></summary>
 
    * [📄 Document Scene Information Extraction v3 pipeline Usage Guide](./docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md)
   </details>
 
-* <details>
+* <details open>
     <summary> <b> 🔍 OCR </b></summary>
 
     * [📜 General OCR pipeline Usage Guide](./docs/pipeline_usage/tutorials/ocr_pipelines/OCR_en.md)
     * [📊 Form Recognition pipeline Usage Guide](./docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_en.md)
   </details>
 
-* <details>
+* <details open>
     <summary> <b> 🎥 Computer Vision </b></summary>
 
    * [🖼️ General Image Classification pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/image_classification_en.md)
@@ -502,7 +502,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
    * [🖼️ Image Anomaly Detection pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/image_anomaly_detection_en.md)
   </details>
   
-* <details>
+* <details open>
     <summary> <b> ⏱️ Time Series Analysis</b> </summary>
 
    * [📈 General Time Series Forecasting pipeline Usage Guide](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_forecasting_en.md)
@@ -510,7 +510,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
    * [🕒 General Time Series Classification pipeline Usage Guide](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_classification_en.md)
   </details>
 
-* <details>
+* <details open>
     <summary> <b>🔧 Related Documentation</b> </summary>
 
    * [🖥️ PaddleX pipeline Command Line Usage Guide](./docs/pipeline_usage/instructions/pipeline_CLI_usage_en.md)
@@ -522,7 +522,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
 <details open>
 <summary> <b> ⚙️ Single Function Module Usage </b></summary>
 
-* <details>
+* <details open>
   <summary> <b> 🔍 OCR </b></summary>
 
   * [📝 Text Detection Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/text_detection_en.md)
@@ -535,7 +535,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
   * [📐 Formula Recognition Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md)
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🖼️ Image Classification </b></summary>
 
   * [📂 Image Classification Module Usage Guide](./docs/module_usage/tutorials/cv_modules/image_classification_en.md)
@@ -546,13 +546,13 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
 
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🏞️ Image Features </b></summary>
 
     * [🔗 General Image Feature Module Usage Guide](./docs/module_usage/tutorials/cv_modules//image_feature_en.md)
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🎯 Object Detection </b></summary>
 
   * [🎯 Object Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/object_detection_en.md)
@@ -564,7 +564,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
 
   </details>
 
-* <details>
+* <details open>
   <summary> <b> 🖼️ Image Segmentation </b></summary>
 
   * [🗺️ Semantic Segmentation Module Usage Guide](./docs/module_usage/tutorials/cv_modules/semantic_segmentation_en.md)
@@ -572,7 +572,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
   * [🚨 Image Anomaly Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/anomaly_detection_en.md)
   </details>
 
-* <details>
+* <details open>
   <summary> <b> ⏱️ Time Series Analysis </b></summary>
 
   * [📈 Time Series Forecasting Module Usage Guide](./docs/module_usage/tutorials/ts_modules/time_series_forecast_en.md)
@@ -580,7 +580,7 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
   * [🕒 Time Series Classification Module Usage Guide](./docs/module_usage/tutorials/ts_modules/time_series_classification_en.md)
   </details>
     
-* <details>
+* <details open>
   <summary> <b> 📄 Related Documentation </b></summary>
 
   * [📝 PaddleX Single Model Python Script Usage Guide](./docs/module_usage/instructions/model_python_API_en.md)

+ 385 - 25
docs/support_list/pipelines_list.md

@@ -3,30 +3,390 @@
 # PaddleX产线列表(CPU/GPU)
 
 ## 1、基础产线
-|产线名称|产线模块|星河社区体验地址|产线介绍|适用场景|
-|-|-|-|-|-|
-|通用图像分类|图像分类|[在线体验](https://aistudio.baidu.com/community/app/100061/webUI)|图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。|商品图片的自动分类和识别、流水线上不合格产品的实时监控、安防监控中人员的识别|
-|通用目标检测|目标检测|[在线体验](https://aistudio.baidu.com/community/app/70230/webUI)|目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。|视频监控中移动物体的跟踪、自动驾驶中车辆的检测、工业制造中缺陷产品的检测、零售业中货架商品的检测|
-|通用语义分割|语义分割|[在线体验](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter)|语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。|地理信息系统中卫星图像的分析、机器人视觉中障碍物、通行区域的物体的分割、电影制作中前景和背景的分离|
-|通用实例分割|实例分割|[在线体验](https://aistudio.baidu.com/community/app/100063/webUI)|实例分割是一种计算机视觉任务,它不仅要识别图像中的物体类别,还要区分同一类别中不同实例的像素,从而实现对每个物体的精确分割。实例分割可以在同一图像中分别标记出每一辆车、每一个人或每一只动物,确保它们在像素级别上被独立处理。例如,在一幅包含多辆车和行人的街景图像中,实例分割能够将每辆车和每个人的轮廓清晰地分开,形成多个独立的区域标签。这项技术广泛应用于自动驾驶、视频监控和机器人视觉等领域,通常依赖于深度学习模型(如Mask R-CNN等),通过卷积神经网络来实现高效的像素分类和实例区分,为复杂场景的理解提供了强大的支持。|商场中人群的计数、农业智能化中农作物或果实数量的统计、图像编辑中特定物体的选择和分割|
-|通用OCR|文本检测<br>文本识别|[在线体验](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent)|OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。|智能安防中车牌号、门牌号等信息的识别、纸质文档的数字化、文化遗产中古代文字的识别|
-|通用表格识别|版面区域检测<br>表格结构识别<br>文本检测<br>文本识别|[在线体验](https://aistudio.baidu.com/community/app/91661/webUI)|表格识别是一种自动从文档或图像中识别和提取表格内容及其结构的技术,广泛应用于数据录入、信息检索和文档分析等领域。通过使用计算机视觉和机器学习算法,表格识别能够将复杂的表格信息转换为可编辑的格式,方便用户进一步处理和分析数据。|银行账单的处理、医疗报告中各项指标的识别和提取、合同中表格信息的提取|
-|时序预测|时序预测|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。|股票预测、气候预测、疾病传播预测、能源需求预测、交通流量预测、产品生命周期预测、电力负荷预测|
-|时序异常检测|时序异常检测|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|时序异常检测是一种识别时间序列数据中异常模式或行为的技术,广泛应用于网络安全、设备监控和金融欺诈检测等领域。它通过分析历史数据中的正常趋势和规律,来发现与预期行为显著不同的事件,例如突然增加的网络流量或异常的交易活动。时序异常检测通常使用统计方法或机器学习算法(如孤立森林、LSTM等),能够自动识别数据中的异常点,为企业和组织提供实时警报,帮助及时应对潜在风险和问题。这项技术在保障系统稳定性和安全性方面发挥着重要作用。|金融欺诈检测、网络入侵检测、设备故障检测、工业生产异常检测、股票市场异常检测、电力系统异常检测|
-|时序分类|时序分类|[在线体验](https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter)|时序分类是一种将时间序列数据归类到预定义类别的技术,广泛应用于行为识别、语音识别和金融趋势分析等领域。它通过分析随时间变化的特征,识别出不同的模式或事件,例如将一段语音信号分类为“问候”或“请求”,或将股票价格走势划分为“上涨”或“下跌”。时序分类通常使用机器学习和深度学习模型,能够有效捕捉时间依赖性和变化规律,以便为数据提供准确的分类标签。这项技术在智能监控、语音助手和市场预测等应用中起着关键作用。|心电图分类、股票市场行为分类、脑电图分类、情绪分类、交通状态分类、网络流量分类、设备工作状态分类|
-|图像多标签分类|图像多标签分类|暂无|图像多标签分类是一种将一张图像同时分配到多个相关类别的技术,广泛应用于图像标注、内容推荐和社交媒体分析等领域。它能够识别图像中存在的多个物体或特征,例如一张图片中同时包含“狗”和“户外”这两个标签。通过使用深度学习模型,图像多标签分类能够自动提取图像特征并进行准确分类,以便为用户提供更加全面的信息。这项技术在智能搜索引擎和自动内容生成等应用中具有重要意义。|医学影像诊断、复杂场景识别、多目标监控、商品属性识别、生态环境监测、安全监控、灾害预警等|
-|小目标检测|小目标检测|暂无|小目标检测是一种专门识别图像中体积较小物体的技术,广泛应用于监控、无人驾驶和卫星图像分析等领域。它能够从复杂场景中准确找到并分类像行人、交通标志或小动物等小尺寸物体。通过使用深度学习算法和优化的卷积神经网络,小目标检测可以有效提升对小物体的识别能力,确保在实际应用中不遗漏重要信息。这项技术在提高安全性和自动化水平方面发挥着重要作用。|无人驾驶汽车中的行人检测、卫星图像中的小型建筑物识别、智能交通系统中的小型交通标志检测、安防监控中的小型入侵物体识别、工业检测中的微小瑕疵检测、无人机图像中的小型动物监测|
-|图像异常检测|图像异常检测|暂无|图像异常检测是一种通过分析图像中的内容,来识别与众不同或不符合正常模式的图像处理技术。它广泛应用于工业质量检测、医疗影像分析和安全监控等领域。通过使用机器学习和深度学习算法,图像异常检测能够自动识别出图像中潜在的缺陷、异常或异常行为,从而帮助我们及时发现问题并采取相应措施。图像异常检测系统被设计用于自动检测和标记图像中的异常情况,以提高工作效率和准确性。|工业质量控制、医疗影像分析、监控视频异常检测、交通监控中的违规行为识别、自动驾驶中的障碍物检测、农业病虫害监测、环境监测中的污染物识别|
-|文档场景信息抽取v3|表格结构识别<br>版面区域检测<br>文本检测<br>文本识别<br>印章文本检测<br>文档图像矫正<br>文档图像方向分类|[在线体验](https://aistudio.baidu.com/community/app/182491/webUI?source=appCenter)|文档图像场景信息抽取v3(PP-ChatOCRv3-doc)是飞桨特色的文档和图像智能分析解决方案,结合了 LLM 和 OCR 技术,一站式解决版面分析、生僻字、多页 pdf、表格、印章识别等常见的复杂文档信息抽取难点问题,结合文心大模型将海量数据和知识相融合,准确率高且应用广泛。开源版支持本地体验和本地部署,支持各个模块的微调训练。|知识图谱的构建、在线新闻和社交媒体中特定事件相关信息的检测、学术文献中关键信息的抽取和分析,特别是需要对印章、扭曲图片、更复杂表格进行识别的场景。|
+
+<table>
+    <tr>
+        <th width="10%">产线名称</th>
+        <th width="10%">产线模块</th>
+        <th width="10%">星河社区体验地址</th>
+        <th width="50%">产线介绍</th>
+        <th width="20%">适用场景</th>
+    </tr>
+  <tr>
+    <td>通用图像分类</td>
+    <td>图像分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">在线体验</a></td>
+    <td>图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。</td>
+    <td>
+    <ul>
+        <li>商品图片的自动分类和识别</li>
+        <li>流水线上不合格产品的实时监控</li>
+        <li>安防监控中人员的识别</li>
+      </ul>
+  </tr>
+  <tr>
+    <td>通用目标检测</td>
+    <td>目标检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">在线体验</a></td>
+    <td>目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。</td>
+    <td>
+      <ul>
+        <li>视频监控中移动物体的跟踪</li>
+        <li>自动驾驶中车辆的检测</li>
+        <li>工业制造中缺陷产品的检测</li>
+        <li>零售业中货架商品的检测</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>通用语义分割</td>
+    <td>语义分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">在线体验</a></td>
+    <td>语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。</td>
+    <td>
+    <ul>
+        <li>地理信息系统中卫星图像的分析</li>
+        <li>机器人视觉中障碍物</li>
+        <li>通行区域的物体的分割</li>
+        <li>电影制作中前景和背景的分离</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>通用实例分割</td>
+    <td>实例分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100063/webUI">在线体验</a></td>
+    <td>实例分割是一种计算机视觉任务,它不仅要识别图像中的物体类别,还要区分同一类别中不同实例的像素,从而实现对每个物体的精确分割。实例分割可以在同一图像中分别标记出每一辆车、每一个人或每一只动物,确保它们在像素级别上被独立处理。例如,在一幅包含多辆车和行人的街景图像中,实例分割能够将每辆车和每个人的轮廓清晰地分开,形成多个独立的区域标签。这项技术广泛应用于自动驾驶、视频监控和机器人视觉等领域,通常依赖于深度学习模型(如Mask R-CNN等),通过卷积神经网络来实现高效的像素分类和实例区分,为复杂场景的理解提供了强大的支持。</td>
+    <td>
+      <ul>
+        <li>商场中人群的计数</li>
+        <li>农业智能化中农作物或果实数量的统计</li>
+        <li>图像编辑中特定物体的选择和分割</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>通用OCR</td>
+    <td>文本检测</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">在线体验</a></td>
+    <td rowspan = 2>OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。</td>
+    <td rowspan = 2>
+    <ul>
+        <li>智能安防中车牌号</li>
+        <li>门牌号等信息的识别</li>
+        <li>纸质文档的数字化</li>
+        <li>文化遗产中古代文字的识别</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+    <td rowspan = 4>通用表格识别</td>
+    <td>版面区域检测</td>
+    <td rowspan = 4><a href="https://aistudio.baidu.com/community/app/91661/webUI">在线体验</a></td>
+    <td rowspan = 4>表格识别是一种自动从文档或图像中识别和提取表格内容及其结构的技术,广泛应用于数据录入、信息检索和文档分析等领域。通过使用计算机视觉和机器学习算法,表格识别能够将复杂的表格信息转换为可编辑的格式,方便用户进一步处理和分析数据。</td>
+    <td rowspan = 4>
+    <ul>
+        <li>银行账单的处理</li>
+        <li>医疗报告中各项指标的识别和提取</li>
+        <li>合同中表格信息的提取</li>
+      </ul>
+      </td>
+   </tr>
+  <tr>
+    <td>表格结构识别</td>
+  </tr>
+  <tr>
+    <td>文本检测</td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+    <td>时序预测</td>
+    <td>时序预测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。</td>
+    <td>
+    <ul>
+        <li>股票预测</li>
+        <li>气候预测</li>
+        <li>疾病传播预测</li>
+        <li>能源需求预测</li>
+        <li>交通流量预测</li>
+        <li>产品生命周期预测</li>
+        <li>电力负荷预测</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>时序异常检测</td>
+    <td>时序异常检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>时序异常检测是一种识别时间序列数据中异常模式或行为的技术,广泛应用于网络安全、设备监控和金融欺诈检测等领域。它通过分析历史数据中的正常趋势和规律,来发现与预期行为显著不同的事件,例如突然增加的网络流量或异常的交易活动。时序异常检测通常使用统计方法或机器学习算法(如孤立森林、LSTM等),能够自动识别数据中的异常点,为企业和组织提供实时警报,帮助及时应对潜在风险和问题。这项技术在保障系统稳定性和安全性方面发挥着重要作用。</td>
+    <td>
+    <ul>
+        <li>金融欺诈检测</li>
+        <li>网络入侵检测</li>
+        <li>设备故障检测</li>
+        <li>工业生产异常检测</li>
+        <li>股票市场异常检测</li>
+        <li>电力系统异常检测</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>时序分类</td>
+    <td>时序分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter">在线体验</a></td>
+    <td>时序分类是一种将时间序列数据归类到预定义类别的技术,广泛应用于行为识别、语音识别和金融趋势分析等领域。它通过分析随时间变化的特征,识别出不同的模式或事件,例如将一段语音信号分类为“问候”或“请求”,或将股票价格走势划分为“上涨”或“下跌”。时序分类通常使用机器学习和深度学习模型,能够有效捕捉时间依赖性和变化规律,以便为数据提供准确的分类标签。这项技术在智能监控、语音助手和市场预测等应用中起着关键作用。</td>
+    <td>
+    <ul>
+        <li>心电图分类</li>
+        <li>股票市场行为分类</li>
+        <li>脑电图分类</li>
+        <li>情绪分类</li>
+        <li>交通状态分类</li>
+        <li>网络流量分类</li>
+        <li>设备工作状态分类</li>
+      </ul>
+      </td>
+  </tr>
+   <tr>
+    <td>图像多标签分类</td>
+    <td>图像多标签分类</td>
+    <td>暂无</td>
+    <td>图像多标签分类是一种将一张图像同时分配到多个相关类别的技术,广泛应用于图像标注、内容推荐和社交媒体分析等领域。它能够识别图像中存在的多个物体或特征,例如一张图片中同时包含“狗”和“户外”这两个标签。通过使用深度学习模型,图像多标签分类能够自动提取图像特征并进行准确分类,以便为用户提供更加全面的信息。这项技术在智能搜索引擎和自动内容生成等应用中具有重要意义。</td>
+    <td>
+    <ul>
+        <li>医学影像诊断</li>
+        <li>复杂场景识别</li>
+        <li>多目标监控</li>
+        <li>商品属性识别</li>
+        <li>生态环境监测</li>
+        <li>安全监控</li>
+        <li>灾害预警</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>小目标检测</td>
+    <td>小目标检测</td>
+    <td>暂无</td>
+    <td>小目标检测是一种专门识别图像中体积较小物体的技术,广泛应用于监控、无人驾驶和卫星图像分析等领域。它能够从复杂场景中准确找到并分类像行人、交通标志或小动物等小尺寸物体。通过使用深度学习算法和优化的卷积神经网络,小目标检测可以有效提升对小物体的识别能力,确保在实际应用中不遗漏重要信息。这项技术在提高安全性和自动化水平方面发挥着重要作用。</td>
+    <td>
+  <ul>
+    <li>无人驾驶汽车中的行人检测</li>
+    <li>卫星图像中的小型建筑物识别</li>
+    <li>智能交通系统中的小型交通标志检测</li>
+    <li>安防监控中的小型入侵物体识别</li>
+    <li>工业检测中的微小瑕疵检测</li>
+    <li>无人机图像中的小型动物监测</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+    <td>图像异常检测</td>
+    <td>图像异常检测</td>
+    <td>暂无</td>
+    <td>图像异常检测是一种通过分析图像中的内容,来识别与众不同或不符合正常模式的图像处理技术。它广泛应用于工业质量检测、医疗影像分析和安全监控等领域。通过使用机器学习和深度学习算法,图像异常检测能够自动识别出图像中潜在的缺陷、异常或异常行为,从而帮助我们及时发现问题并采取相应措施。图像异常检测系统被设计用于自动检测和标记图像中的异常情况,以提高工作效率和准确性。</td>
+    <td>
+    <ul>
+    <li>工业质量控制</li>
+    <li>医疗影像分析</li>
+    <li>监控视频异常检测</li>
+    <li>交通监控中的违规行为识别</li>
+    <li>自动驾驶中的障碍物检测</li>
+    <li>农业病虫害监测</li>
+    <li>环境监测中的污染物识别</li>
+  </ul></td>
+  </tr>
+  <tr>
+    <td rowspan = 7>文档场景信息抽取v3</td>
+    <td>表格结构识别</td>
+    <td rowspan = 7><a href="https://aistudio.baidu.com/community/app/182491/webUI?source=appCenter">在线体验</a></td>
+    <td rowspan = 7>文档图像场景信息抽取v3(PP-ChatOCRv3-doc)是飞桨特色的文档和图像智能分析解决方案,结合了 LLM 和 OCR 技术,一站式解决版面分析、生僻字、多页 pdf、表格、印章识别等常见的复杂文档信息抽取难点问题,结合文心大模型将海量数据和知识相融合,准确率高且应用广泛。开源版支持本地体验和本地部署,支持各个模块的微调训练。</td>
+    <td rowspan="7">
+  <ul>
+    <li>知识图谱的构建</li>
+    <li>在线新闻和社交媒体中特定事件相关信息的检测</li>
+    <li>学术文献中关键信息的抽取和分析(特别是需要对印章、扭曲图片、更复杂表格进行识别的场景)</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+    <td>版面区域检测</td>
+  </tr>
+  <tr>
+    <td>文本检测</td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+    <td>印章文本检测</td>
+  </tr>
+  <tr>
+    <td>文档图像矫正</td>
+  </tr>
+  <tr>
+    <td>文档图像方向分类</td>
+  </tr>
+</table>
+
 
 ## 2、特色产线
-|产线名称|产线模块|星河社区体验地址|产线介绍|适用场景|
-|-|-|-|-|-|
-|大模型半监督学习-图像分类|大模型半监督学习-图像分类|[在线体验](https://aistudio.baidu.com/community/app/100061/webUI)|图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。|在训练数据不足时,进行商品图像分类、艺术品风格分类、农作物病虫害识别、动物种类识别、卫星遥感图像中土地、水体、建筑的分类。|
-|大模型半监督学习-目标检测|大模型半监督学习-目标检测|[在线体验](https://aistudio.baidu.com/community/app/70230/webUI)|大模型半监督学习-目标检测产线是飞桨特色的目标检测训练产线,通过大小模型联合训练的方式,使用少量有标签数据和大量无标注数据提升模型的精度,大幅度减少人工迭代模型的成本、标注数据的成本。下图展示了该产线在公开数据集 COCO 10% 有标注数据的指标情况。使用该产线训练后,在 COCO 10% 有标签数据 +90% 无标签数据上,大模型(RT-DETR-H)相比直接训练,精度高 8.4 个百分点(47.7%->56.1%),刷新了该数据集的 SOTA。小模型(PicoDet-S)相比直接训练,精度高了 10 个百分点以上(18.3%->28.8%)。|在训练数据不足时,进行自动驾驶中行人、车辆、交通标志的检测、军事侦察中敌方设施、装备的检测、深海探测中海底生物的检测。|
-|大模型半监督学习-OCR|文本检测 大模型半监督学习-文本识别|[在线体验](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent)|大模型半监督学习-OCR 产线是飞桨特色的 OCR 训练产线,由文本检测模型和文本识别模型串联完成。预测图片首先经过文本检测模型获取全部的文本行检测框并进行矫正,之后经文本识别模型得到 OCR 文本结果。 在文本识别部分,通过大小模型联合训练的方式,使用少量有标签数据和大量无标签数据提升模型的精度,大幅度减少人工迭代模型的成本、标注数据的成本。下图展示了文本识别应用中的 2 个场景使用该产线后的效果,可以看到,在不同的场景中,大模型和小模型均有大幅提升。|在训练数据不足时,进行纸质文档电子化、身份证、护照、驾驶执照上个人信息的读取和验证、零售中产品信息的识别|
-|通用场景信息抽取v2|文本检测 文本识别|[在线体验](https://aistudio.baidu.com/community/app/91662?source=appCenter)|通用场景信息抽取产线(PP-ChatOCRv2-common)是飞桨特色的复杂文档智能分析解决方案,结合了 LLM 和 OCR 技术,将文心大模型将海量数据和知识相融合,准确率高且应用广泛。 PP-ChatOCRv2-common 的系统流程:首先输入预测图片,送入通用 OCR 系统,经过文本检测和文本识别模型预测出文字,与用户 Query 之间进行向量检索,得到与 Query 相关的文本信息;最后把这些文本信息传入 prompt 生成器重新组合成 prompt,让文心大模型给出预测结果。|身份证、银行卡、户口本、火车票、纸质发票等多种场景的关键信息提取|
-|文档场景信息抽取v2|版面区域检测 文本检测 文本识别 表格识别|[在线体验](https://aistudio.baidu.com/community/app/70303/webUI?source=appCenter)|文档场景信息抽取产线(PP-ChatOCRv2-doc)是飞桨特色的复杂文档智能分析解决方案,结合了 LLM 和 OCR 技术,一站式解决生僻字、特殊标点、多页 pdf、表格等常见的复杂文档信息抽取难点问题,结合文心大模型将海量数据和知识相融合,准确率高且应用广泛。 PP-ChatOCRv2-doc 的系统流程如下图所示:首先输入预测图片,送入通用 OCR 系统,经过版面分析后,预测图像中的文字信息和表格结构;随后将 OCR 系统预测出的文字、表格结构与用户 Query 之间进行向量检索,得到与 Query 相关的文本信息;最后把这些文本信息传入 prompt 生成器重新组合成 prompt,让文心大模型给出预测结果。|知识图谱的构建、在线新闻和社交媒体中特定事件相关信息的检测、学术文献中关键信息的抽取和分析|
-|文档场景信息抽取v3|表格结构识别 版面区域检测 文本检测 文本识别 印章文本检测 文档图像矫正 文档图像方向分类|[在线体验](https://aistudio.baidu.com/community/app/182491/webUI?source=appCenter)|文档图像场景信息抽取v3(PP-ChatOCRv3-doc)是飞桨特色的文档和图像智能分析解决方案,结合了 LLM 和 OCR 技术,一站式解决版面分析、生僻字、多页 pdf、表格、印章识别等常见的复杂文档信息抽取难点问题,结合文心大模型将海量数据和知识相融合,准确率高且应用广泛。该特色产线在星河社区上支持更强的二次开发能力(如OCR识别数据融合能力),支持性能更强的服务化部署能力。|知识图谱的构建、在线新闻和社交媒体中特定事件相关信息的检测、学术文献中关键信息的抽取和分析,特别是需要对印章、扭曲图片、更复杂表格进行识别的场景。|
-|多模型融合时序预测v2|时序预测模块|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|多模型融合时序预测v2 产线的特点是针对不同任务场景,能够自适应的选择和集成模型,提升任务的精度。时序在每日的生活、工作中随处可见,时序预测的任务是指根据历史时间序列数据的模式和趋势,对未来的时间序列进行预测的任务。它在许多领域中都有应用,包括金融、天气预报、交通流量预测、销售预测、股票价格预测等。|股票市场预测、销售预测、电力需求预测、天气预测、疾病爆发预测、网络流量预测、金融风险预测|
-|多模型融合时序异常检测v2|时序异常检测模块|[在线体验](https://aistudio.baidu.com/community/app/105708/webUI?source=appCenter)|多模型融合时序异常检测产线的特点是针对不同任务场景,能够自适应的选择和集成模型,提升任务的精度。时序异常检测是目前时序数据分析成熟的应用之一,其旨在从正常的时间序列数据中识别出异常的事件或行为模式,在众多领域都发挥着重要作用:量化交易中,用于发现异常交易行为,规避潜在的金融风险;在网络安全领域,用于实时监测网络流量,及时发现并预防网络攻击行为的发生;在自动驾驶汽车领域,异常检测可以持续监测车载传感器数据,及时发现可能导致事故的异常情况;而在大型工业设备维护中,异常检测也能够帮助工程师提前发现设备故障苗头,从而采取预防性维护措施,降低设备停机时间和维修成本。|网络入侵检测、金融欺诈检测、工业生产中故障设备的检测、医疗健康中患者异常状态的监测|
+
+<table>
+    <tr>
+        <th width="10%">产线名称</th>
+        <th width="10%">产线模块</th>
+        <th width="10%">星河社区体验地址</th>
+        <th width="50%">产线介绍</th>
+        <th width="20%">适用场景</th>
+    </tr>
+  <tr>
+    <td>大模型半监督学习-图像分类</td>
+    <td>大模型半监督学习-图像分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">在线体验</a></td>
+    <td>图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。</td>
+    <td>
+  <ul>
+    <li>商品图像分类</li>
+    <li>艺术品风格分类</li>
+    <li>农作物病虫害识别</li>
+    <li>动物种类识别</li>
+    <li>卫星遥感图像中土地、水体、建筑的分类</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+    <td>大模型半监督学习-目标检测</td>
+    <td>大模型半监督学习-目标检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">在线体验</a></td>
+    <td>大模型半监督学习-目标检测产线是飞桨特色的目标检测训练产线,通过大小模型联合训练的方式,使用少量有标签数据和大量无标注数据提升模型的精度,大幅度减少人工迭代模型的成本、标注数据的成本。下图展示了该产线在公开数据集 COCO 10% 有标注数据的指标情况。使用该产线训练后,在 COCO 10% 有标签数据 +90% 无标签数据上,大模型(RT-DETR-H)相比直接训练,精度高 8.4 个百分点(47.7%->56.1%),刷新了该数据集的 SOTA。小模型(PicoDet-S)相比直接训练,精度高了 10 个百分点以上(18.3%->28.8%)。</td>
+    <td>
+  <ul>
+    <li>自动驾驶中行人、车辆、交通标志的检测</li>
+    <li>军事侦察中敌方设施、装备的检测</li>
+    <li>深海探测中海底生物的检测</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+    <td rowspan = 2>大模型半监督学习-OCR</td>
+    <td>文本检测</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">在线体验</a></td>
+    <td rowspan = 2>大模型半监督学习-OCR 产线是飞桨特色的 OCR 训练产线,由文本检测模型和文本识别模型串联完成。预测图片首先经过文本检测模型获取全部的文本行检测框并进行矫正,之后经文本识别模型得到 OCR 文本结果。 在文本识别部分,通过大小模型联合训练的方式,使用少量有标签数据和大量无标签数据提升模型的精度,大幅度减少人工迭代模型的成本、标注数据的成本。下图展示了文本识别应用中的 2 个场景使用该产线后的效果,可以看到,在不同的场景中,大模型和小模型均有大幅提升。</td>
+    <td rowspan="2">
+  <ul>
+    <li>纸质文档电子化</li>
+    <li>身份证、护照、驾驶执照上个人信息的读取和验证</li>
+    <li>零售中产品信息识别</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+      <td>大模型半监督学习-文本识别</td>
+    </tr>
+  <tr>
+    <td rowspan = 2>通用场景信息抽取v2</td>
+    <td>文本检测</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91662?source=appCenter">在线体验</a></td>
+    <td rowspan = 2>通用场景信息抽取产线(PP-ChatOCRv2-common)是飞桨特色的复杂文档智能分析解决方案,结合了 LLM 和 OCR 技术,将文心大模型将海量数据和知识相融合,准确率高且应用广泛。 PP-ChatOCRv2-common 的系统流程:首先输入预测图片,送入通用 OCR 系统,经过文本检测和文本识别模型预测出文字,与用户 Query 之间进行向量检索,得到与 Query 相关的文本信息;最后把这些文本信息传入 prompt 生成器重新组合成 prompt,让文心大模型给出预测结果。</td>
+    <td rowspan="2">
+  <ul>
+    <li>身份证、银行卡、户口本、火车票、纸质发票等多种场景的关键信息提取</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+      <td>文本识别</td>
+    </tr>
+  <tr>
+    <td rowspan = 4>文档场景信息抽取v2</td>
+    <td>版面区域检测</td>
+    <td rowspan = 4><a href="https://aistudio.baidu.com/community/app/70303/webUI?source=appCenter">在线体验</a></td>
+    <td rowspan = 4>文档场景信息抽取产线(PP-ChatOCRv2-doc)是飞桨特色的复杂文档智能分析解决方案,结合了 LLM 和 OCR 技术,一站式解决生僻字、特殊标点、多页 pdf、表格等常见的复杂文档信息抽取难点问题,结合文心大模型将海量数据和知识相融合,准确率高且应用广泛。 PP-ChatOCRv2-doc 的系统流程如下图所示:首先输入预测图片,送入通用 OCR 系统,经过版面分析后,预测图像中的文字信息和表格结构;随后将 OCR 系统预测出的文字、表格结构与用户 Query 之间进行向量检索,得到与 Query 相关的文本信息;最后把这些文本信息传入 prompt 生成器重新组合成 prompt,让文心大模型给出预测结果。</td>
+    <td rowspan="4">
+  <ul>
+    <li>知识图谱的构建</li>
+    <li>在线新闻和社交媒体中特定事件相关信息的检测</li>
+    <li>学术文献中关键信息的抽取和分析</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+      <td>文本检测</td>
+    </tr>
+    <tr>
+      <td>文本识别</td>
+    </tr>
+    <tr>
+      <td>表格识别</td>
+    </tr>
+  <tr>
+    <td rowspan = 7>文档场景信息抽取v3</td>
+    <td>表格结构识别</td>
+    <td rowspan = 7><a href="https://aistudio.baidu.com/community/app/182491/webUI?source=appCenter">在线体验</a></td>
+    <td rowspan = 7>文档图像场景信息抽取v3(PP-ChatOCRv3-doc)是飞桨特色的文档和图像智能分析解决方案,结合了 LLM 和 OCR 技术,一站式解决版面分析、生僻字、多页 pdf、表格、印章识别等常见的复杂文档信息抽取难点问题,结合文心大模型将海量数据和知识相融合,准确率高且应用广泛。该特色产线在星河社区上支持更强的二次开发能力(如OCR识别数据融合能力),支持性能更强的服务化部署能力。</td>
+    <td rowspan="7">
+  <ul>
+    <li>知识图谱的构建</li>
+    <li>在线新闻和社交媒体中特定事件相关信息的检测</li>
+    <li>学术文献中关键信息的抽取和分析(特别是需要对印章、扭曲图片、更复杂表格进行识别的场景)</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+      <td>版面区域检测</td>
+    </tr>
+    <tr>
+      <td>文本检测</td>
+    </tr>
+    <tr>
+      <td>文本识别</td>
+    </tr>
+    <tr>
+      <td>印章文本检测</td>
+    </tr>
+    <tr>
+      <td>文档图像矫正</td>
+    </tr>
+    <tr>
+      <td>文档图像方向分类</td>
+    </tr>
+  <tr>
+    <td>多模型融合时序预测v2</td>
+    <td>时序预测模块</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>多模型融合时序预测v2 产线的特点是针对不同任务场景,能够自适应的选择和集成模型,提升任务的精度。时序在每日的生活、工作中随处可见,时序预测的任务是指根据历史时间序列数据的模式和趋势,对未来的时间序列进行预测的任务。它在许多领域中都有应用,包括金融、天气预报、交通流量预测、销售预测、股票价格预测等。</td>
+    <td>
+  <ul>
+    <li>股票市场预测</li>
+    <li>销售预测</li>
+    <li>电力需求预测</li>
+    <li>天气预测</li>
+    <li>疾病爆发预测</li>
+    <li>网络流量预测</li>
+    <li>金融风险预测</li>
+  </ul>
+</td>
+  </tr>
+  <tr>
+    <td>多模型融合时序异常检测v2</td>
+    <td>时序异常检测模块</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105708/webUI?source=appCenter">在线体验</a></td>
+    <td>多模型融合时序异常检测产线的特点是针对不同任务场景,能够自适应的选择和集成模型,提升任务的精度。时序异常检测是目前时序数据分析成熟的应用之一,其旨在从正常的时间序列数据中识别出异常的事件或行为模式,在众多领域都发挥着重要作用:量化交易中,用于发现异常交易行为,规避潜在的金融风险;在网络安全领域,用于实时监测网络流量,及时发现并预防网络攻击行为的发生;在自动驾驶汽车领域,异常检测可以持续监测车载传感器数据,及时发现可能导致事故的异常情况;而在大型工业设备维护中,异常检测也能够帮助工程师提前发现设备故障苗头,从而采取预防性维护措施,降低设备停机时间和维修成本。</td>
+    <td>
+  <ul>
+    <li>网络入侵检测</li>
+    <li>金融欺诈检测</li>
+    <li>工业生产中故障设备检测</li>
+    <li>医疗健康中患者异常状态监测</li>
+  </ul>
+</td>
+  </tr>
+</table>

+ 36 - 4
docs/support_list/pipelines_list_dcu.md

@@ -3,10 +3,42 @@
 # PaddleX产线列表(DCU)
 
 ## 1、基础产线
-|产线名称|产线模块|星河社区体验地址|产线介绍|适用场景|
-|-|-|-|-|-|
-|通用图像分类|图像分类|[在线体验](https://aistudio.baidu.com/community/app/100061/webUI)|图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。|商品图片的自动分类和识别、流水线上不合格产品的实时监控、安防监控中人员的识别|
-|通用语义分割|语义分割|[在线体验](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter)|语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。|地理信息系统中卫星图像的分析、机器人视觉中障碍物、通行区域的物体的分割、电影制作中前景和背景的分离|
+
+<table>
+    <tr>
+        <th width="10%">产线名称</th>
+        <th width="10%">产线模块</th>
+        <th width="10%">星河社区体验地址</th>
+        <th width="50%">产线介绍</th>
+        <th width="20%">适用场景</th>
+    </tr>
+  <tr>
+    <td>通用图像分类</td>
+    <td>图像分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">在线体验</a></td>
+    <td>图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。</td>
+    <td>
+    <ul>
+        <li>商品图片的自动分类和识别</li>
+        <li>流水线上不合格产品的实时监控</li>
+        <li>安防监控中人员的识别</li>
+      </ul>
+  </tr>
+  <tr>
+    <td>通用语义分割</td>
+    <td>语义分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">在线体验</a></td>
+    <td>语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。</td>
+    <td>
+    <ul>
+        <li>地理信息系统中卫星图像的分析</li>
+        <li>机器人视觉中障碍物</li>
+        <li>通行区域的物体的分割</li>
+        <li>电影制作中前景和背景的分离</li>
+      </ul>
+    </td>
+  </tr>
+</table>
 
 ## 2、特色产线
 暂不支持,敬请期待!

+ 35 - 4
docs/support_list/pipelines_list_dcu_en.md

@@ -4,10 +4,41 @@
 
 ## 1. Basic Pipelines
 
-| Pipeline Name | Pipeline Modules | Baidu AIStudio Community Experience URL | Pipeline Introduction | Applicable Scenarios |
-|-|-|-|-|-|
-| General Image Classification | Image Classification | [Online Experience](https://aistudio.baidu.com/community/app/100061/webUI) | Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images. | Automatic classification and recognition of product images, real-time monitoring of unqualified products on production lines, personnel recognition in security surveillance |
-| General Semantic Segmentation | Semantic Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter) | Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in the image but also classifies each pixel, allowing regions of the same category to be fully labeled. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads pixel by pixel, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis. | Analysis of satellite images in Geographic Information Systems, segmentation of obstacles and passable areas in robot vision, separation of foreground and background in film production |
+<table>
+  <tr>
+    <th width="10%">Pipeline Name</th>
+    <th width="10%">Pipeline Modules</th>
+    <th width="10%">Baidu AIStudio Community Experience URL</th>
+    <th width="50%">Pipeline Introduction</th>
+    <th width="20%">Applicable Scenarios</th>
+  </tr>
+  <tr>
+    <td>General Image Classification</td>
+    <td>Image Classification</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">Online Experience</a></td>
+    <td>Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images.</td>
+    <td>
+      <ul>
+        <li>Automatic classification and recognition of product images</li>
+        <li>Real-time monitoring of defective products on production lines</li>
+        <li>Personnel recognition in security surveillance</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Semantic Segmentation</td>
+    <td>Semantic Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">Online Experience</a></td>
+    <td>Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in an image but also classifies each pixel, allowing entire regions of the same category to be marked. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads at the pixel level, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis.</td>
+    <td>
+      <ul>
+        <li>Analysis of satellite images in Geographic Information Systems</li>
+        <li>Segmentation of obstacles and passable areas in robot vision</li>
+        <li>Separation of foreground and background in film production</li>
+      </ul>
+    </td>
+  </tr>
+</table>
 
 ## 2. Featured Pipelines
 Not supported yet, please stay tuned!

+ 217 - 14
docs/support_list/pipelines_list_en.md

@@ -4,19 +4,222 @@
 
 ## 1. Basic Pipelines
 
-| Pipeline Name | Pipeline Modules | Baidu AIStudio Community Experience URL | Pipeline Introduction | Applicable Scenarios |
-|-|-|-|-|-|
-| General Image Classification | Image Classification | [Online Experience](https://aistudio.baidu.com/community/app/100061/webUI) | Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images. | Automatic classification and recognition of product images, real-time monitoring of defective products on production lines, personnel recognition in security surveillance |
-| General Object Detection | Object Detection | [Online Experience](https://aistudio.baidu.com/community/app/70230/webUI) | Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content. | Tracking moving objects in video surveillance, vehicle detection in autonomous driving, defect detection in industrial manufacturing, shelf product detection in retail |
-| General Semantic Segmentation | Semantic Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter) | Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in an image but also classifies each pixel, allowing entire regions of the same category to be marked. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads at the pixel level, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis. | Analysis of satellite images in Geographic Information Systems, segmentation of obstacles and passable areas in robot vision, separation of foreground and background in film production |
-| General Instance Segmentation | Instance Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100063/webUI) | Instance segmentation is a computer vision task that identifies object categories in images and distinguishes the pixels of different instances within the same category, enabling precise segmentation of each object. Instance segmentation can separately mark each car, person, or animal in an image, ensuring they are processed independently at the pixel level. For example, in a street scene image with multiple cars and pedestrians, instance segmentation can clearly separate the contours of each car and person, forming multiple independent region labels. This technology is widely used in autonomous driving, video surveillance, and robot vision, often relying on deep learning models (e.g., Mask R-CNN) that use CNNs for efficient pixel classification and instance differentiation, providing powerful support for understanding complex scenes. | Crowd counting in malls, counting crops or fruits in agricultural intelligence, selecting and segmenting specific objects in image editing |
-| General OCR | Text Detection, Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent) | OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR system that achieves millisecond-level text content prediction on CPUs, achieving state-of-the-art (SOTA) performance in general scenarios. Based on this project, developers from academia, industry, and research have quickly implemented various OCR applications covering general, manufacturing, finance, transportation,
+<table>
+  <tr>
+    <th width="10%">Pipeline Name</th>
+    <th width="10%">Pipeline Modules</th>
+    <th width="10%">Baidu AIStudio Community Experience URL</th>
+    <th width="50%">Pipeline Introduction</th>
+    <th width="20%">Applicable Scenarios</th>
+  </tr>
+  <tr>
+    <td>General Image Classification</td>
+    <td>Image Classification</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">Online Experience</a></td>
+    <td>Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images.</td>
+    <td>
+      <ul>
+        <li>Automatic classification and recognition of product images</li>
+        <li>Real-time monitoring of defective products on production lines</li>
+        <li>Personnel recognition in security surveillance</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Object Detection</td>
+    <td>Object Detection</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">Online Experience</a></td>
+    <td>Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content.</td>
+    <td>
+      <ul>
+        <li>Tracking moving objects in video surveillance</li>
+        <li>Vehicle detection in autonomous driving</li>
+        <li>Defect detection in industrial manufacturing</li>
+        <li>Shelf product detection in retail</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Semantic Segmentation</td>
+    <td>Semantic Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">Online Experience</a></td>
+    <td>Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in an image but also classifies each pixel, allowing entire regions of the same category to be marked. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads at the pixel level, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis.</td>
+    <td>
+      <ul>
+        <li>Analysis of satellite images in Geographic Information Systems</li>
+        <li>Segmentation of obstacles and passable areas in robot vision</li>
+        <li>Separation of foreground and background in film production</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Instance Segmentation</td>
+    <td>Instance Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100063/webUI">Online Experience</a></td>
+    <td>Instance segmentation is a computer vision task that identifies object categories in images and distinguishes the pixels of different instances within the same category, enabling precise segmentation of each object. Instance segmentation can separately mark each car, person, or animal in an image, ensuring they are processed independently at the pixel level. For example, in a street scene image with multiple cars and pedestrians, instance segmentation can clearly separate the contours of each car and person, forming multiple independent region labels. This technology is widely used in autonomous driving, video surveillance, and robot vision, often relying on deep learning models (e.g., Mask R-CNN) that use CNNs for efficient pixel classification and instance differentiation, providing powerful support for understanding complex scenes.</td>
+    <td>
+      <ul>
+        <li>Crowd counting in malls</li>
+        <li>Counting crops or fruits in agricultural intelligence</li>
+        <li>Selecting and segmenting specific objects in image editing</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>General OCR</td>
+    <td >Text Detection</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">Online Experience</a></td>
+    <td rowspan = 2>OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR system that achieves millisecond-level text content prediction on CPUs, achieving state-of-the-art (SOTA) performance in general scenarios. Based on this project, developers from academia, industry, and research have quickly implemented various OCR applications covering general, manufacturing, finance, transportation.</td>
+    <td rowspan = 2>
+      <ul>
+        <li>Document digitization</li>
+        <li>Information extraction</li>
+        <li>Data processing</li>
+      </ul>
+    </td>
+  </tr>
+    <tr>
+    <td>Text Recognition</td>
+  </tr>
+<tr>
+        <td rowspan = 4>General Table Recognition</td>
+        <td>Layout Detection</td>
+        <td rowspan = 4><a href="https://aistudio.baidu.com/community/app/91661/webUI">Online Experience</a></td>
+        <td rowspan = 4>Table recognition is a technology that automatically identifies and extracts table content and its structure from documents or images. It is widely used in data entry, information retrieval, and document analysis. By leveraging computer vision and machine learning algorithms, table recognition can convert complex table information into editable formats, facilitating further data processing and analysis by users</td>
+<td rowspan = 4>
+    <ul>
+        <li>Processing of bank statements</li>
+        <li>recognition and extraction of various indicators in medical reports</li>
+        <li>extraction of tabular information from contracts</li>
+      </ul>
+      </td>
+   </tr>
+  <tr>
+    <td>Table Structure Recognition </td>
+  </tr>
+  <tr>
+    <td>Text Detection</td>
+  </tr>
+  <tr>
+    <td>Text Recognition</td>
+  </tr>
+    <tr>
+        <td>Time Series Forecasting</td>
+        <td>Time Series Forecasting Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis</td>
+        <td>
+    <ul>
+        <li>Stock prediction</li>
+        <li>climate forecasting</li>
+        <li>disease spread prediction</li>
+        <li>energy demand forecasting</li>
+        <li>traffic flow prediction</li>
+        <li>product lifecycle prediction</li>
+        <li>electric load forecasting</li>
+      </ul>
+      </td>
+    </tr>
+    <tr>
+        <td>Time Series Anomaly Detection</td>
+        <td>Time Series Anomaly Detection Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series anomaly detection is a technique that identifies abnormal patterns or behaviors in time series data. It is widely used in network security, device monitoring, and financial fraud detection. By analyzing normal trends and patterns in historical data, it discovers events that significantly differ from expected behaviors, such as sudden increases in network traffic or unusual transaction activities. Time series anomaly detection often employs statistical methods or machine learning algorithms (like Isolation Forest, LSTM, etc.), which can automatically identify anomalies in data, providing real-time alerts to enterprises and organizations to help promptly address potential risks and issues. This technology plays a vital role in ensuring system stability and security</td>
+        <td>
+    <ul>
+        <li>Financial fraud detection</li>
+        <li>network intrusion detection</li>
+        <li>equipment failure detection</li>
+        <li>industrial production anomaly detection</li>
+        <li>stock market anomaly detection</li>
+        <li>power system anomaly detection</li>
+      </ul>
+      </td>
+    </tr>
+    <tr>
+        <td>Time Series Classification</td>
+        <td>Time Series Classification Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series classification is a technique that categorizes time series data into predefined classes. It is widely applied in behavior recognition, speech recognition, and financial trend analysis. By analyzing features that vary over time, it identifies different patterns or events, such as classifying a speech signal as "greeting" or "request" or dividing stock price movements into "rising" or "falling." Time series classification typically utilizes machine learning and deep learning models, effectively capturing time dependencies and variation patterns to provide accurate classification labels for data. This technology plays a key role in intelligent monitoring, voice assistants, and market forecasting applications</td>
+            <td>
+    <ul>
+        <li>Electrocardiogram Classification</li>
+        <li>Stock Market Behavior Classification</li>
+        <li>Electroencephalogram Classification</li>
+        <li>Emotion Classification</li>
+        <li>Traffic Condition Classification</li>
+        <li>Network Traffic Classification</li>
+        <li>Equipment Operating Condition Classification</li>
+      </ul>
+      </td>
+</table>
+
 ## 2. Featured Pipelines
 
-| Pipeline Name | Pipeline Modules | Baidu AIStudio Community Experience Link | Pipeline Introduction | Applicable Scenarios |
-|-|-|-|-|-|
-| Semi-supervised Learning for Large Models - Image Classification | Semi-supervised Learning for Large Models - Image Classification | [Online Experience](https://aistudio.baidu.com/community/app/100061/webUI) | Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The general image classification pipeline is designed to solve image classification tasks for given images. | When training data is insufficient, for tasks such as commodity image classification, artwork style classification, crop disease and pest identification, animal species recognition, and classification of land, water bodies, and buildings in satellite remote sensing images. |
-| Semi-supervised Learning for Large Models - Object Detection | Semi-supervised Learning for Large Models - Object Detection | [Online Experience](https://aistudio.baidu.com/community/app/70230/webUI) | The semi-supervised learning for large models - object detection pipeline is a unique offering from PaddlePaddle. It utilizes a joint training approach with large and small models, leveraging a small amount of labeled data and a large amount of unlabeled data to enhance model accuracy, significantly reducing the costs of manual model iteration and data annotation. The figure below demonstrates the performance of this pipeline on the COCO dataset with 10% labeled data. After training with this pipeline, on COCO 10% labeled data + 90% unlabeled data, the large model (RT-DETR-H) achieves an 8.4% higher accuracy (47.7% -> 56.1%), setting a new state-of-the-art (SOTA) for this dataset. The small model (PicoDet-S) also achieves over 10% higher accuracy (18.3% -> 28.8%) compared to direct training. | When training data is insufficient, for tasks such as pedestrian, vehicle, and traffic sign detection in autonomous driving, enemy facility and equipment detection in military reconnaissance, and seabed organism detection in deep-sea exploration. |
-| Semi-supervised Learning for Large Models - OCR | Text Detection & Large Model Semi-supervised Learning - Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent) | The semi-supervised learning for large models - OCR pipeline is a unique OCR training pipeline from PaddlePaddle. It consists of a text detection model and a text recognition model working in series. The input image is first processed by the text detection model to obtain and rectify all text line bounding boxes, which are then fed into the text recognition model to generate OCR text results. In the text recognition part, a joint training approach with large and small models is adopted, utilizing a small amount of labeled data and a large amount of unlabeled data to enhance model accuracy, significantly reducing the costs of manual model iteration and data annotation. The figure below shows the effects of this pipeline in two OCR application scenarios, demonstrating significant improvements for both large and small models in different contexts. | When training data is insufficient, for tasks such as digitizing paper documents, reading and verifying personal information on IDs, passports, and driver's licenses, and recognizing product information in retail. |
-| General Scene Information Extraction v2 | Text Detection & Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91662?source=appCenter) | The General Scene Information Extraction Pipeline (PP-ChatOCRv2-common) is a unique intelligent analysis solution for complex documents from PaddlePaddle. It combines Large Language Models (LLMs) and OCR technology, leveraging the Wenxin Large Model to integrate massive data and knowledge, achieving high accuracy and wide applicability. The system flow of PP-ChatOCRv2-common is as follows: Input the prediction image, send it to the general OCR system, predict text through text detection and text recognition models, perform vector retrieval between the predicted text and user queries to obtain relevant text information, and finally pass these text information to the prompt generator to recombine them into prompts for the Wenxin Large Model to generate prediction results. | Key information extraction from various scenarios such as ID cards, bank cards, household registration books, train tickets, and paper invoices. |
-| Document Scene Information Extraction v2 | Layout Analysis, Text Detection, Text Recognition, Table Recognition | [Online Experience](https://aistudio.baidu.com/community
+<table>
+  <tr>
+    <th width="10%">Pipeline Name</th>
+    <th width="10%">Pipeline Modules</th>
+    <th width="10%">Baidu AIStudio Community Experience Link</th>
+    <th width="50%">Pipeline Introduction</th>
+    <th width="20%">Applicable Scenarios</th>
+  </tr>
+  <tr>
+    <td>Semi-supervised Learning for Large Models - Image Classification</td>
+    <td>Semi-supervised Learning for Large Models - Image Classification</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">Online Experience</a></td>
+    <td>Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The general image classification pipeline is designed to solve image classification tasks for given images.</td>
+    <td>
+      <ul>
+        <li>Commodity image classification</li>
+        <li>Artwork style classification</li>
+        <li>Crop disease and pest identification</li>
+        <li>Animal species recognition</li>
+        <li>Classification of land, water bodies, and buildings in satellite remote sensing images</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td >Semi-supervised Learning for Large Models - Object Detection</td>
+    <td>Semi-supervised Learning for Large Models - Object Detection</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">Online Experience</a></td>
+    <td>The semi-supervised learning for large models - object detection pipeline is a unique offering from PaddlePaddle. It utilizes a joint training approach with large and small models, leveraging a small amount of labeled data and a large amount of unlabeled data to enhance model accuracy, significantly reducing the costs of manual model iteration and data annotation. The figure below demonstrates the performance of this pipeline on the COCO dataset with 10% labeled data. After training with this pipeline, on COCO 10% labeled data + 90% unlabeled data, the large model (RT-DETR-H) achieves an 8.4% higher accuracy (47.7% -> 56.1%), setting a new state-of-the-art (SOTA) for this dataset. The small model (PicoDet-S) also achieves over 10% higher accuracy (18.3% -> 28.8%) compared to direct training.</td>
+    <td>
+      <ul>
+        <li>Pedestrian, vehicle, and traffic sign detection in autonomous driving</li>
+        <li>Enemy facility and equipment detection in military reconnaissance</li>
+        <li>Seabed organism detection in deep-sea exploration</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>Semi-supervised Learning for Large Models - OCR</td>
+    <td>Text Detection</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">Online Experience</a></td>
+    <td rowspan = 2>The semi-supervised learning for large models - OCR pipeline is a unique OCR training pipeline from PaddlePaddle. It consists of a text detection model and a text recognition model working in series. The input image is first processed by the text detection model to obtain and rectify all text line bounding boxes, which are then fed into the text recognition model to generate OCR text results. In the text recognition part, a joint training approach with large and small models is adopted, utilizing a small amount of labeled data and a large amount of unlabeled data to enhance model accuracy, significantly reducing the costs of manual model iteration and data annotation. The figure below shows the effects of this pipeline in two OCR application scenarios, demonstrating significant improvements for both large and small models in different contexts.</td>
+    <td rowspan = 2>
+      <ul>
+        <li>Digitizing paper documents</li>
+        <li>Reading and verifying personal information on IDs, passports, and driver's licenses</li>
+        <li>Recognizing product information in retail</li>
+      </ul>
+    </td>
+  </tr>
+    <tr>
+      <td>Large Model Semi-supervised Learning - Text Recognition</td>
+    </tr>
+  <tr>
+    <td rowspan = 2>General Scene Information Extraction v2</td>
+    <td>Text Detection</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91662?source=appCenter">Online Experience</a></td>
+    <td rowspan = 2>The General Scene Information Extraction Pipeline (PP-ChatOCRv2-common) is a unique intelligent analysis solution for complex documents from PaddlePaddle. It combines Large Language Models (LLMs) and OCR technology, leveraging the Wenxin Large Model to integrate massive data and knowledge, achieving high accuracy and wide applicability. The system flow of PP-ChatOCRv2-common is as follows: Input the prediction image, send it to the general OCR system, predict text through text detection and text recognition models, perform vector retrieval between the predicted text and user queries to obtain relevant text information, and finally pass these text information to the prompt generator to recombine them into prompts for the Wenxin Large Model to generate prediction results.</td>
+    <td rowspan = 2>
+      <ul>
+        <li>Key information extraction from various scenarios such as ID cards, bank cards, household registration books, train tickets, and paper invoices</li>
+      </ul>
+    </td>
+  </tr>
+      <tr>
+      <td>Text Recognition</td>
+    </tr>
+</table>

+ 84 - 7
docs/support_list/pipelines_list_mlu.md

@@ -3,13 +3,90 @@
 # PaddleX产线列表(MLU)
 
 ## 1、基础产线
-|产线名称|产线模块|星河社区体验地址|产线介绍|适用场景|
-|-|-|-|-|-|
-|通用图像分类|图像分类|[在线体验](https://aistudio.baidu.com/community/app/100061/webUI)|图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。|商品图片的自动分类和识别、流水线上不合格产品的实时监控、安防监控中人员的识别|
-|通用目标检测|目标检测|[在线体验](https://aistudio.baidu.com/community/app/70230/webUI)|目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。|视频监控中移动物体的跟踪、自动驾驶中车辆的检测、工业制造中缺陷产品的检测、零售业中货架商品的检测|
-|通用语义分割|语义分割|[在线体验](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter)|语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。|地理信息系统中卫星图像的分析、机器人视觉中障碍物、通行区域的物体的分割、电影制作中前景和背景的分离|
-|通用OCR|文本检测<br>文本识别|[在线体验](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent)|OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。|智能安防中车牌号、门牌号等信息的识别、纸质文档的数字化、文化遗产中古代文字的识别|
-|时序预测|时序预测|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。|股票预测、气候预测、疾病传播预测、能源需求预测、交通流量预测、产品生命周期预测、电力负荷预测|
+
+<table>
+    <tr>
+        <th width="10%">产线名称</th>
+        <th width="10%">产线模块</th>
+        <th width="10%">星河社区体验地址</th>
+        <th width="50%">产线介绍</th>
+        <th width="20%">适用场景</th>
+    </tr>
+  <tr>
+    <td>通用图像分类</td>
+    <td>图像分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">在线体验</a></td>
+    <td>图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。</td>
+    <td>
+    <ul>
+        <li>商品图片的自动分类和识别</li>
+        <li>流水线上不合格产品的实时监控</li>
+        <li>安防监控中人员的识别</li>
+      </ul>
+  </tr>
+  <tr>
+    <td>通用目标检测</td>
+    <td>目标检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">在线体验</a></td>
+    <td>目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。</td>
+    <td>
+      <ul>
+        <li>视频监控中移动物体的跟踪</li>
+        <li>自动驾驶中车辆的检测</li>
+        <li>工业制造中缺陷产品的检测</li>
+        <li>零售业中货架商品的检测</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>通用语义分割</td>
+    <td>语义分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">在线体验</a></td>
+    <td>语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。</td>
+    <td>
+    <ul>
+        <li>地理信息系统中卫星图像的分析</li>
+        <li>机器人视觉中障碍物</li>
+        <li>通行区域的物体的分割</li>
+        <li>电影制作中前景和背景的分离</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>通用OCR</td>
+    <td>文本检测</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">在线体验</a></td>
+    <td rowspan = 2>OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。</td>
+    <td rowspan = 2>
+    <ul>
+        <li>智能安防中车牌号</li>
+        <li>门牌号等信息的识别</li>
+        <li>纸质文档的数字化</li>
+        <li>文化遗产中古代文字的识别</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+    <td>时序预测</td>
+    <td>时序预测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。</td>
+    <td>
+    <ul>
+        <li>股票预测</li>
+        <li>气候预测</li>
+        <li>疾病传播预测</li>
+        <li>能源需求预测</li>
+        <li>交通流量预测</li>
+        <li>产品生命周期预测</li>
+        <li>电力负荷预测</li>
+      </ul>
+      </td>
+  </tr>
+</table>
 
 ## 2、特色产线
 暂不支持,敬请期待!

+ 82 - 8
docs/support_list/pipelines_list_mlu_en.md

@@ -3,14 +3,88 @@
 # PaddleX Pipelines (MLU)
 
 ## 1. Basic Pipelines
-
-| Pipeline Name | Pipeline Modules | Baidu AIStudio Community Experience URL | Pipeline Introduction | Applicable Scenarios |
-|-|-|-|-|-|
-| General Image Classification | Image Classification | [Online Experience](https://aistudio.baidu.com/community/app/100061/webUI) | Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images. | Automatic classification and recognition of product images, real-time monitoring of unqualified products on production lines, personnel recognition in security surveillance |
-| General Object Detection | Object Detection | [Online Experience](https://aistudio.baidu.com/community/app/70230/webUI) | Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content. | Tracking moving objects in video surveillance, vehicle detection in autonomous driving, defect detection in industrial manufacturing, shelf product detection in retail |
-| General Semantic Segmentation | Semantic Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter) | Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in the image but also classifies each pixel, allowing regions of the same category to be fully labeled. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads pixel by pixel, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis. | Analysis of satellite images in Geographic Information Systems, segmentation of obstacles and passable areas in robot vision, separation of foreground and background in film production |
-| General OCR | Text Detection Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent) | OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR serial system that achieves millisecond-level accurate prediction of text content on CPUs, reaching open-source SOTA in general scenarios. Based on this project, developers from academia, industry, and research have rapidly deployed various OCR applications, covering general, manufacturing, finance, transportation, and other fields | Recognition of license plate numbers, house numbers in smart security, digitization of paper documents, and recognition of ancient scripts in cultural heritage |
-| Time Series Forecasting | Time Series Forecasting Module | [Online Experience](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter) | Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis | Stock prediction, climate forecasting, disease spread prediction, energy demand forecasting, traffic flow prediction, product lifecycle prediction, and electric load forecasting |
+<table>
+  <tr>
+    <th width="10%">Pipeline Name</th>
+    <th width="10%">Pipeline Modules</th>
+    <th width="10%">Baidu AIStudio Community Experience URL</th>
+    <th width="50%">Pipeline Introduction</th>
+    <th width="20%">Applicable Scenarios</th>
+  </tr>
+  <tr>
+    <td>General Image Classification</td>
+    <td>Image Classification</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">Online Experience</a></td>
+    <td>Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images.</td>
+    <td>
+      <ul>
+        <li>Automatic classification and recognition of product images</li>
+        <li>Real-time monitoring of defective products on production lines</li>
+        <li>Personnel recognition in security surveillance</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Object Detection</td>
+    <td>Object Detection</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">Online Experience</a></td>
+    <td>Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content.</td>
+    <td>
+      <ul>
+        <li>Tracking moving objects in video surveillance</li>
+        <li>Vehicle detection in autonomous driving</li>
+        <li>Defect detection in industrial manufacturing</li>
+        <li>Shelf product detection in retail</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Semantic Segmentation</td>
+    <td>Semantic Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">Online Experience</a></td>
+    <td>Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in an image but also classifies each pixel, allowing entire regions of the same category to be marked. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads at the pixel level, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis.</td>
+    <td>
+      <ul>
+        <li>Analysis of satellite images in Geographic Information Systems</li>
+        <li>Segmentation of obstacles and passable areas in robot vision</li>
+        <li>Separation of foreground and background in film production</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>General OCR</td>
+    <td >Text Detection</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">Online Experience</a></td>
+    <td rowspan = 2>OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR system that achieves millisecond-level text content prediction on CPUs, achieving state-of-the-art (SOTA) performance in general scenarios. Based on this project, developers from academia, industry, and research have quickly implemented various OCR applications covering general, manufacturing, finance, transportation.</td>
+    <td rowspan = 2>
+      <ul>
+        <li>Document digitization</li>
+        <li>Information extraction</li>
+        <li>Data processing</li>
+      </ul>
+    </td>
+  </tr>
+    <tr>
+    <td>Text Recognition</td>
+  </tr>
+  <tr>
+        <td>Time Series Forecasting</td>
+        <td>Time Series Forecasting Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis.</td>
+        <td>
+            <ul>
+                <li>Stock prediction</li>
+                <li>Climate forecasting</li>
+                <li>Disease spread prediction</li>
+                <li>Energy demand forecasting</li>
+                <li>Traffic flow prediction</li>
+                <li>Product lifecycle prediction</li>
+                <li>Electric load forecasting</li>
+            </ul>
+        </td>
+    </tr>
+</table>
 
 ## 2. Featured Pipelines
 Not supported yet, please stay tuned!

+ 152 - 11
docs/support_list/pipelines_list_npu.md

@@ -3,17 +3,158 @@
 # PaddleX产线列表(NPU)
 
 ## 1、基础产线
-|产线名称|产线模块|星河社区体验地址|产线介绍|适用场景|
-|-|-|-|-|-|
-|通用图像分类|图像分类|[在线体验](https://aistudio.baidu.com/community/app/100061/webUI)|图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。|商品图片的自动分类和识别、流水线上不合格产品的实时监控、安防监控中人员的识别|
-|通用目标检测|目标检测|[在线体验](https://aistudio.baidu.com/community/app/70230/webUI)|目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。|视频监控中移动物体的跟踪、自动驾驶中车辆的检测、工业制造中缺陷产品的检测、零售业中货架商品的检测|
-|通用语义分割|语义分割|[在线体验](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter)|语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。|地理信息系统中卫星图像的分析、机器人视觉中障碍物、通行区域的物体的分割、电影制作中前景和背景的分离|
-|通用实例分割|实例分割|[在线体验](https://aistudio.baidu.com/community/app/100063/webUI)|实例分割是一种计算机视觉任务,它不仅要识别图像中的物体类别,还要区分同一类别中不同实例的像素,从而实现对每个物体的精确分割。实例分割可以在同一图像中分别标记出每一辆车、每一个人或每一只动物,确保它们在像素级别上被独立处理。例如,在一幅包含多辆车和行人的街景图像中,实例分割能够将每辆车和每个人的轮廓清晰地分开,形成多个独立的区域标签。这项技术广泛应用于自动驾驶、视频监控和机器人视觉等领域,通常依赖于深度学习模型(如Mask R-CNN等),通过卷积神经网络来实现高效的像素分类和实例区分,为复杂场景的理解提供了强大的支持。|商场中人群的计数、农业智能化中农作物或果实数量的统计、图像编辑中特定物体的选择和分割|
-|通用OCR|文本检测<br>文本识别|[在线体验](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent)|OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。|智能安防中车牌号、门牌号等信息的识别、纸质文档的数字化、文化遗产中古代文字的识别|
-|通用表格识别|版面区域检测<br>表格结构识别<br>文本检测<br>文本识别|[在线体验](https://aistudio.baidu.com/community/app/91661/webUI)|表格识别是一种自动从文档或图像中识别和提取表格内容及其结构的技术,广泛应用于数据录入、信息检索和文档分析等领域。通过使用计算机视觉和机器学习算法,表格识别能够将复杂的表格信息转换为可编辑的格式,方便用户进一步处理和分析数据。|银行账单的处理、医疗报告中各项指标的识别和提取、合同中表格信息的提取|
-|时序预测|时序预测|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。|股票预测、气候预测、疾病传播预测、能源需求预测、交通流量预测、产品生命周期预测、电力负荷预测|
-|时序异常检测|时序异常检测|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|时序异常检测是一种识别时间序列数据中异常模式或行为的技术,广泛应用于网络安全、设备监控和金融欺诈检测等领域。它通过分析历史数据中的正常趋势和规律,来发现与预期行为显著不同的事件,例如突然增加的网络流量或异常的交易活动。时序异常检测通常使用统计方法或机器学习算法(如孤立森林、LSTM等),能够自动识别数据中的异常点,为企业和组织提供实时警报,帮助及时应对潜在风险和问题。这项技术在保障系统稳定性和安全性方面发挥着重要作用。|金融欺诈检测、网络入侵检测、设备故障检测、工业生产异常检测、股票市场异常检测、电力系统异常检测|
-|时序分类|时序分类|[在线体验](https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter)|时序分类是一种将时间序列数据归类到预定义类别的技术,广泛应用于行为识别、语音识别和金融趋势分析等领域。它通过分析随时间变化的特征,识别出不同的模式或事件,例如将一段语音信号分类为“问候”或“请求”,或将股票价格走势划分为“上涨”或“下跌”。时序分类通常使用机器学习和深度学习模型,能够有效捕捉时间依赖性和变化规律,以便为数据提供准确的分类标签。这项技术在智能监控、语音助手和市场预测等应用中起着关键作用。|心电图分类、股票市场行为分类、脑电图分类、情绪分类、交通状态分类、网络流量分类、设备工作状态分类|
+
+<table>
+    <tr>
+        <th width="10%">产线名称</th>
+        <th width="10%">产线模块</th>
+        <th width="10%">星河社区体验地址</th>
+        <th width="50%">产线介绍</th>
+        <th width="20%">适用场景</th>
+    </tr>
+  <tr>
+    <td>通用图像分类</td>
+    <td>图像分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">在线体验</a></td>
+    <td>图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。</td>
+    <td>
+    <ul>
+        <li>商品图片的自动分类和识别</li>
+        <li>流水线上不合格产品的实时监控</li>
+        <li>安防监控中人员的识别</li>
+      </ul>
+  </tr>
+  <tr>
+    <td>通用目标检测</td>
+    <td>目标检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">在线体验</a></td>
+    <td>目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。</td>
+    <td>
+      <ul>
+        <li>视频监控中移动物体的跟踪</li>
+        <li>自动驾驶中车辆的检测</li>
+        <li>工业制造中缺陷产品的检测</li>
+        <li>零售业中货架商品的检测</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>通用语义分割</td>
+    <td>语义分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">在线体验</a></td>
+    <td>语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。</td>
+    <td>
+    <ul>
+        <li>地理信息系统中卫星图像的分析</li>
+        <li>机器人视觉中障碍物</li>
+        <li>通行区域的物体的分割</li>
+        <li>电影制作中前景和背景的分离</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>通用实例分割</td>
+    <td>实例分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100063/webUI">在线体验</a></td>
+    <td>实例分割是一种计算机视觉任务,它不仅要识别图像中的物体类别,还要区分同一类别中不同实例的像素,从而实现对每个物体的精确分割。实例分割可以在同一图像中分别标记出每一辆车、每一个人或每一只动物,确保它们在像素级别上被独立处理。例如,在一幅包含多辆车和行人的街景图像中,实例分割能够将每辆车和每个人的轮廓清晰地分开,形成多个独立的区域标签。这项技术广泛应用于自动驾驶、视频监控和机器人视觉等领域,通常依赖于深度学习模型(如Mask R-CNN等),通过卷积神经网络来实现高效的像素分类和实例区分,为复杂场景的理解提供了强大的支持。</td>
+    <td>
+      <ul>
+        <li>商场中人群的计数</li>
+        <li>农业智能化中农作物或果实数量的统计</li>
+        <li>图像编辑中特定物体的选择和分割</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>通用OCR</td>
+    <td>文本检测</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">在线体验</a></td>
+    <td rowspan = 2>OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。</td>
+    <td rowspan = 2>
+    <ul>
+        <li>智能安防中车牌号</li>
+        <li>门牌号等信息的识别</li>
+        <li>纸质文档的数字化</li>
+        <li>文化遗产中古代文字的识别</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+  <td rowspan = 4>通用表格识别</td>
+    <td>版面区域检测</td>
+    <td rowspan = 4><a href="https://aistudio.baidu.com/community/app/91661/webUI">在线体验</a></td>
+    <td rowspan = 4>表格识别是一种自动从文档或图像中识别和提取表格内容及其结构的技术,广泛应用于数据录入、信息检索和文档分析等领域。通过使用计算机视觉和机器学习算法,表格识别能够将复杂的表格信息转换为可编辑的格式,方便用户进一步处理和分析数据。</td>
+    <td rowspan = 4>
+    <ul>
+        <li>银行账单的处理</li>
+        <li>医疗报告中各项指标的识别和提取</li>
+        <li>合同中表格信息的提取</li>
+      </ul>
+      </td>
+   </tr>
+  <tr>
+    <td>表格结构识别</td>
+  </tr>
+  <tr>
+    <td>文本检测</td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+    <td>时序预测</td>
+    <td>时序预测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。</td>
+    <td>
+    <ul>
+        <li>股票预测</li>
+        <li>气候预测</li>
+        <li>疾病传播预测</li>
+        <li>能源需求预测</li>
+        <li>交通流量预测</li>
+        <li>产品生命周期预测</li>
+        <li>电力负荷预测</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>时序异常检测</td>
+    <td>时序异常检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>时序异常检测是一种识别时间序列数据中异常模式或行为的技术,广泛应用于网络安全、设备监控和金融欺诈检测等领域。它通过分析历史数据中的正常趋势和规律,来发现与预期行为显著不同的事件,例如突然增加的网络流量或异常的交易活动。时序异常检测通常使用统计方法或机器学习算法(如孤立森林、LSTM等),能够自动识别数据中的异常点,为企业和组织提供实时警报,帮助及时应对潜在风险和问题。这项技术在保障系统稳定性和安全性方面发挥着重要作用。</td>
+    <td>
+    <ul>
+        <li>金融欺诈检测</li>
+        <li>网络入侵检测</li>
+        <li>设备故障检测</li>
+        <li>工业生产异常检测</li>
+        <li>股票市场异常检测</li>
+        <li>电力系统异常检测</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>时序分类</td>
+    <td>时序分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter">在线体验</a></td>
+    <td>时序分类是一种将时间序列数据归类到预定义类别的技术,广泛应用于行为识别、语音识别和金融趋势分析等领域。它通过分析随时间变化的特征,识别出不同的模式或事件,例如将一段语音信号分类为“问候”或“请求”,或将股票价格走势划分为“上涨”或“下跌”。时序分类通常使用机器学习和深度学习模型,能够有效捕捉时间依赖性和变化规律,以便为数据提供准确的分类标签。这项技术在智能监控、语音助手和市场预测等应用中起着关键作用。</td>
+    <td>
+    <ul>
+        <li>心电图分类</li>
+        <li>股票市场行为分类</li>
+        <li>脑电图分类</li>
+        <li>情绪分类</li>
+        <li>交通状态分类</li>
+        <li>网络流量分类</li>
+        <li>设备工作状态分类</li>
+      </ul>
+      </td>
+  </tr>
+</table>
 
 ## 2、特色产线
 暂不支持,敬请期待!

+ 149 - 11
docs/support_list/pipelines_list_npu_en.md

@@ -4,17 +4,155 @@
 
 ## 1. Basic Pipelines
 
-| Pipeline Name | Pipeline Modules | Baidu AIStudio Community Experience URL | Pipeline Introduction | Applicable Scenarios |
-|-|-|-|-|-|
-| General Image Classification | Image Classification | [Online Experience](https://aistudio.baidu.com/community/app/100061/webUI) | Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images. | Automatic classification and recognition of product images, real-time monitoring of unqualified products on production lines, personnel recognition in security surveillance |
-| General Object Detection | Object Detection | [Online Experience](https://aistudio.baidu.com/community/app/70230/webUI) | Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content. | Tracking moving objects in video surveillance, vehicle detection in autonomous driving, defect detection in industrial manufacturing, shelf product detection in retail |
-| General Semantic Segmentation | Semantic Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter) | Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in the image but also classifies each pixel, allowing regions of the same category to be fully labeled. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads pixel by pixel, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis. | Analysis of satellite images in Geographic Information Systems, segmentation of obstacles and passable areas in robot vision, separation of foreground and background in film production |
-| General Instance Segmentation | Instance Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100063/webUI) | Instance segmentation is a computer vision task that identifies object categories in images and distinguishes the pixels of different instances within the same category, enabling precise segmentation of each object. Instance segmentation can separately mark each car, person, or animal in an image, ensuring they are processed independently at the pixel level. For example, in a street scene image with multiple cars and pedestrians, instance segmentation can clearly separate the contours of each car and person, forming multiple independent region labels. This technology is widely used in autonomous driving, video surveillance, and robot vision, relying on deep learning models (e.g., Mask R-CNN) that use CNNs to achieve efficient pixel classification and instance differentiation, providing powerful support for understanding complex scenes. | Crowd counting in malls, counting crops or fruits in agricultural intelligence, selecting and segmenting specific objects in image editing |
-| General OCR | Text Detection Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent) | OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR serial system that achieves millisecond-level accurate prediction of text content on CPUs, reaching open-source SOTA in general scenarios. Based on this project, developers from academia, industry, and research have rapidly deployed various OCR applications, covering general, manufacturing, finance, transportation, and other fields | Recognition of license plate numbers, house numbers in smart security, digitization of paper documents, and recognition of ancient scripts in cultural heritage |
-| General Table Recognition | Layout Detection Table Structure Recognition Text Detection Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91661/webUI) | Table recognition is a technology that automatically identifies and extracts table content and its structure from documents or images. It is widely used in data entry, information retrieval, and document analysis. By leveraging computer vision and machine learning algorithms, table recognition can convert complex table information into editable formats, facilitating further data processing and analysis by users | Processing of bank statements, recognition and extraction of various indicators in medical reports, and extraction of tabular information from contracts |
-| Time Series Forecasting | Time Series Forecasting Module | [Online Experience](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter) | Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis | Stock prediction, climate forecasting, disease spread prediction, energy demand forecasting, traffic flow prediction, product lifecycle prediction, and electric load forecasting |
-| Time Series Anomaly Detection | Time Series Anomaly Detection Module|[Online Experience](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter) | Time series anomaly detection is a technique that identifies abnormal patterns or behaviors in time series data. It is widely used in network security, device monitoring, and financial fraud detection. By analyzing normal trends and patterns in historical data, it discovers events that significantly differ from expected behaviors, such as sudden increases in network traffic or unusual transaction activities. Time series anomaly detection often employs statistical methods or machine learning algorithms (like Isolation Forest, LSTM, etc.), which can automatically identify anomalies in data, providing real-time alerts to enterprises and organizations to help promptly address potential risks and issues. This technology plays a vital role in ensuring system stability and security | Financial fraud detection, network intrusion detection, equipment failure detection, industrial production anomaly detection, stock market anomaly detection, and power system anomaly detection |
-| Time Series Classification | Time Series Classification Module |[Online Experience](https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter) | Time series classification is a technique that categorizes time series data into predefined classes. It is widely applied in behavior recognition, speech recognition, and financial trend analysis. By analyzing features that vary over time, it identifies different patterns or events, such as classifying a speech signal as "greeting" or "request" or dividing stock price movements into "rising" or "falling." Time series classification typically utilizes machine learning and deep learning models, effectively capturing time dependencies and variation patterns to provide accurate classification labels for data. This technology plays a key role in intelligent monitoring, voice assistants, and market forecasting applications | Electrocardiogram Classification, Stock Market Behavior Classification, Electroencephalogram Classification, Emotion Classification, Traffic Condition Classification, Network Traffic Classification, and Equipment Operating Condition Classification |
+<table>
+  <tr>
+    <th width="10%">Pipeline Name</th>
+    <th width="10%">Pipeline Modules</th>
+    <th width="10%">Baidu AIStudio Community Experience URL</th>
+    <th width="50%">Pipeline Introduction</th>
+    <th width="20%">Applicable Scenarios</th>
+  </tr>
+  <tr>
+    <td>General Image Classification</td>
+    <td>Image Classification</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">Online Experience</a></td>
+    <td>Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images.</td>
+    <td>
+      <ul>
+        <li>Automatic classification and recognition of product images</li>
+        <li>Real-time monitoring of defective products on production lines</li>
+        <li>Personnel recognition in security surveillance</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Object Detection</td>
+    <td>Object Detection</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">Online Experience</a></td>
+    <td>Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content.</td>
+    <td>
+      <ul>
+        <li>Tracking moving objects in video surveillance</li>
+        <li>Vehicle detection in autonomous driving</li>
+        <li>Defect detection in industrial manufacturing</li>
+        <li>Shelf product detection in retail</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Semantic Segmentation</td>
+    <td>Semantic Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">Online Experience</a></td>
+    <td>Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in an image but also classifies each pixel, allowing entire regions of the same category to be marked. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads at the pixel level, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis.</td>
+    <td>
+      <ul>
+        <li>Analysis of satellite images in Geographic Information Systems</li>
+        <li>Segmentation of obstacles and passable areas in robot vision</li>
+        <li>Separation of foreground and background in film production</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Instance Segmentation</td>
+    <td>Instance Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100063/webUI">Online Experience</a></td>
+    <td>Instance segmentation is a computer vision task that identifies object categories in images and distinguishes the pixels of different instances within the same category, enabling precise segmentation of each object. Instance segmentation can separately mark each car, person, or animal in an image, ensuring they are processed independently at the pixel level. For example, in a street scene image with multiple cars and pedestrians, instance segmentation can clearly separate the contours of each car and person, forming multiple independent region labels. This technology is widely used in autonomous driving, video surveillance, and robot vision, often relying on deep learning models (e.g., Mask R-CNN) that use CNNs for efficient pixel classification and instance differentiation, providing powerful support for understanding complex scenes.</td>
+    <td>
+      <ul>
+        <li>Crowd counting in malls</li>
+        <li>Counting crops or fruits in agricultural intelligence</li>
+        <li>Selecting and segmenting specific objects in image editing</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>General OCR</td>
+    <td >Text Detection</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">Online Experience</a></td>
+    <td rowspan = 2>OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR system that achieves millisecond-level text content prediction on CPUs, achieving state-of-the-art (SOTA) performance in general scenarios. Based on this project, developers from academia, industry, and research have quickly implemented various OCR applications covering general, manufacturing, finance, transportation.</td>
+    <td rowspan = 2>
+      <ul>
+        <li>Document digitization</li>
+        <li>Information extraction</li>
+        <li>Data processing</li>
+      </ul>
+    </td>
+  </tr>
+    <tr>
+    <td>Text Recognition</td>
+  </tr>
+  <tr>
+        <td rowspan = 4>General Table Recognition</td>
+        <td>Layout Detection</td>
+        <td rowspan = 4><a href="https://aistudio.baidu.com/community/app/91661/webUI">Online Experience</a></td>
+        <td rowspan = 4>Table recognition is a technology that automatically identifies and extracts table content and its structure from documents or images. It is widely used in data entry, information retrieval, and document analysis. By leveraging computer vision and machine learning algorithms, table recognition can convert complex table information into editable formats, facilitating further data processing and analysis by users</td>
+<td rowspan = 4>
+    <ul>
+        <li>Processing of bank statements</li>
+        <li>recognition and extraction of various indicators in medical reports</li>
+        <li>extraction of tabular information from contracts</li>
+      </ul>
+      </td>
+   </tr>
+  <tr>
+    <td>Table Structure Recognition </td>
+  </tr>
+  <tr>
+    <td>Text Detection</td>
+  </tr>
+  <tr>
+    <td>Text Recognition</td>
+  </tr>
+    <tr>
+        <td>Time Series Forecasting</td>
+        <td>Time Series Forecasting Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis</td>
+        <td>
+    <ul>
+        <li>Stock prediction</li>
+        <li>climate forecasting</li>
+        <li>disease spread prediction</li>
+        <li>energy demand forecasting</li>
+        <li>traffic flow prediction</li>
+        <li>product lifecycle prediction</li>
+        <li>electric load forecasting</li>
+      </ul>
+      </td>
+    </tr>
+    <tr>
+        <td>Time Series Anomaly Detection</td>
+        <td>Time Series Anomaly Detection Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series anomaly detection is a technique that identifies abnormal patterns or behaviors in time series data. It is widely used in network security, device monitoring, and financial fraud detection. By analyzing normal trends and patterns in historical data, it discovers events that significantly differ from expected behaviors, such as sudden increases in network traffic or unusual transaction activities. Time series anomaly detection often employs statistical methods or machine learning algorithms (like Isolation Forest, LSTM, etc.), which can automatically identify anomalies in data, providing real-time alerts to enterprises and organizations to help promptly address potential risks and issues. This technology plays a vital role in ensuring system stability and security</td>
+        <td>
+    <ul>
+        <li>Financial fraud detection</li>
+        <li>network intrusion detection</li>
+        <li>equipment failure detection</li>
+        <li>industrial production anomaly detection</li>
+        <li>stock market anomaly detection</li>
+        <li>power system anomaly detection</li>
+      </ul>
+      </td>
+    </tr>
+    <tr>
+        <td>Time Series Classification</td>
+        <td>Time Series Classification Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105707/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series classification is a technique that categorizes time series data into predefined classes. It is widely applied in behavior recognition, speech recognition, and financial trend analysis. By analyzing features that vary over time, it identifies different patterns or events, such as classifying a speech signal as "greeting" or "request" or dividing stock price movements into "rising" or "falling." Time series classification typically utilizes machine learning and deep learning models, effectively capturing time dependencies and variation patterns to provide accurate classification labels for data. This technology plays a key role in intelligent monitoring, voice assistants, and market forecasting applications</td>
+            <td>
+    <ul>
+        <li>Electrocardiogram Classification</li>
+        <li>Stock Market Behavior Classification</li>
+        <li>Electroencephalogram Classification</li>
+        <li>Emotion Classification</li>
+        <li>Traffic Condition Classification</li>
+        <li>Network Traffic Classification</li>
+        <li>Equipment Operating Condition Classification</li>
+      </ul>
+      </td>
+</table>
 
 ## 2. Featured Pipelines
 Not supported yet, please stay tuned!

+ 84 - 7
docs/support_list/pipelines_list_xpu.md

@@ -3,13 +3,90 @@
 # PaddleX产线列表(XPU)
 
 ## 1、基础产线
-|产线名称|产线模块|星河社区体验地址|产线介绍|适用场景|
-|-|-|-|-|-|
-|通用图像分类|图像分类|[在线体验](https://aistudio.baidu.com/community/app/100061/webUI)|图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。通用图像分类产线用于解决图像分类任务,对给定的图像。|商品图片的自动分类和识别、流水线上不合格产品的实时监控、安防监控中人员的识别|
-|通用目标检测|目标检测|[在线体验](https://aistudio.baidu.com/community/app/70230/webUI)|目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。|视频监控中移动物体的跟踪、自动驾驶中车辆的检测、工业制造中缺陷产品的检测、零售业中货架商品的检测|
-|通用语义分割|语义分割|[在线体验](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter)|语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。|地理信息系统中卫星图像的分析、机器人视觉中障碍物、通行区域的物体的分割、电影制作中前景和背景的分离|
-|通用OCR|文本检测<br>文本识别|[在线体验](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent)|OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。|智能安防中车牌号、门牌号等信息的识别、纸质文档的数字化、文化遗产中古代文字的识别|
-|时序预测|时序预测|[在线体验](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter)|时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。|股票预测、气候预测、疾病传播预测、能源需求预测、交通流量预测、产品生命周期预测、电力负荷预测|
+
+<table>
+    <tr>
+        <th width="10%">产线名称</th>
+        <th width="10%">产线模块</th>
+        <th width="10%">星河社区体验地址</th>
+        <th width="50%">产线介绍</th>
+        <th width="20%">适用场景</th>
+    </tr>
+  <tr>
+    <td>通用图像分类</td>
+    <td>图像分类</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">在线体验</a></td>
+    <td>图像分类是一种将图像分配到预定义类别的技术。它广泛应用于物体识别、场景理解和自动标注等领域。图像分类可以识别各种物体,如动物、植物、交通标志等,并根据其特征将其归类。通过使用深度学习模型,图像分类能够自动提取图像特征并进行准确分类。</td>
+    <td>
+    <ul>
+        <li>商品图片的自动分类和识别</li>
+        <li>流水线上不合格产品的实时监控</li>
+        <li>安防监控中人员的识别</li>
+      </ul>
+  </tr>
+  <tr>
+    <td>通用目标检测</td>
+    <td>目标检测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">在线体验</a></td>
+    <td>目标检测旨在识别图像或视频中多个对象的类别及其位置,通过生成边界框来标记这些对象。与简单的图像分类不同,目标检测不仅需要识别出图像中有哪些物体,例如人、车和动物等,还需要准确地确定每个物体在图像中的具体位置,通常以矩形框的形式表示。该技术广泛应用于自动驾驶、监控系统和智能相册等领域,依赖于深度学习模型(如YOLO、Faster R-CNN等),这些模型能够高效地提取特征并进行实时检测,显著提升了计算机对图像内容理解的能力。</td>
+    <td>
+      <ul>
+        <li>视频监控中移动物体的跟踪</li>
+        <li>自动驾驶中车辆的检测</li>
+        <li>工业制造中缺陷产品的检测</li>
+        <li>零售业中货架商品的检测</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>通用语义分割</td>
+    <td>语义分割</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">在线体验</a></td>
+    <td>语义分割是一种计算机视觉技术,旨在将图像中的每个像素分配到特定的类别,从而实现对图像内容的精细化理解。语义分割不仅要识别出图像中的物体类型,还要对每个像素进行分类,这样使得同一类别的区域能够被完整标记。例如,在一幅街景图像中,语义分割可以将行人、汽车、天空和道路等不同类别的部分逐像素区分开来,形成一个详细的标签图。这项技术广泛应用于自动驾驶、医学影像分析和人机交互等领域,通常依赖于深度学习模型(如FCN、U-Net等),通过卷积神经网络(CNN)来提取特征并实现高精度的像素级分类,从而为进一步的智能分析提供基础。</td>
+    <td>
+    <ul>
+        <li>地理信息系统中卫星图像的分析</li>
+        <li>机器人视觉中障碍物</li>
+        <li>通行区域的物体的分割</li>
+        <li>电影制作中前景和背景的分离</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>通用OCR</td>
+    <td>文本检测</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">在线体验</a></td>
+    <td rowspan = 2>OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,PP-OCRv4 是一个端到端 OCR 串联系统,可实现 CPU 上毫秒级的文本内容精准预测,在通用场景上达到开源SOTA。基于该项目,产学研界多方开发者已快速落地多个 OCR 应用,使用场景覆盖通用、制造、金融、交通等各个领域。</td>
+    <td rowspan = 2>
+    <ul>
+        <li>智能安防中车牌号</li>
+        <li>门牌号等信息的识别</li>
+        <li>纸质文档的数字化</li>
+        <li>文化遗产中古代文字的识别</li>
+      </ul>
+      </td>
+  </tr>
+  <tr>
+    <td>文本识别</td>
+  </tr>
+  <tr>
+    <td>时序预测</td>
+    <td>时序预测</td>
+    <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">在线体验</a></td>
+    <td>时序预测是一种利用历史数据来预测未来趋势的技术,通过分析时间序列数据的变化模式。广泛应用于金融市场、天气预报和销售预测等领域。它。时序预测通常使用统计方法或深度学习模型(如LSTM、ARIMA等),能够处理数据中的时间依赖性,以提供准确的预判,帮助决策者做出更好的规划和响应。此技术在许多行业中发挥着重要作用,如能源管理、供应链优化和市场分析等。</td>
+    <td>
+    <ul>
+        <li>股票预测</li>
+        <li>气候预测</li>
+        <li>疾病传播预测</li>
+        <li>能源需求预测</li>
+        <li>交通流量预测</li>
+        <li>产品生命周期预测</li>
+        <li>电力负荷预测</li>
+      </ul>
+      </td>
+  </tr>
+</table>
 
 ## 2、特色产线
 暂不支持,敬请期待!

+ 82 - 7
docs/support_list/pipelines_list_xpu_en.md

@@ -4,13 +4,88 @@
 
 ## 1. Basic Pipelines
 
-| Pipeline Name | Pipeline Modules | Baidu AIStudio Community Experience URL | Pipeline Introduction | Applicable Scenarios |
-|-|-|-|-|-|
-| General Image Classification | Image Classification | [Online Experience](https://aistudio.baidu.com/community/app/100061/webUI) | Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images. | Automatic classification and recognition of product images, real-time monitoring of unqualified products on production lines, personnel recognition in security surveillance |
-| General Object Detection | Object Detection | [Online Experience](https://aistudio.baidu.com/community/app/70230/webUI) | Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content. | Tracking moving objects in video surveillance, vehicle detection in autonomous driving, defect detection in industrial manufacturing, shelf product detection in retail |
-| General Semantic Segmentation | Semantic Segmentation | [Online Experience](https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter) | Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in the image but also classifies each pixel, allowing regions of the same category to be fully labeled. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads pixel by pixel, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis. | Analysis of satellite images in Geographic Information Systems, segmentation of obstacles and passable areas in robot vision, separation of foreground and background in film production |
-| General OCR | Text Detection Text Recognition | [Online Experience](https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent) | OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR serial system that achieves millisecond-level accurate prediction of text content on CPUs, reaching open-source SOTA in general scenarios. Based on this project, developers from academia, industry, and research have rapidly deployed various OCR applications, covering general, manufacturing, finance, transportation, and other fields | Recognition of license plate numbers, house numbers in smart security, digitization of paper documents, and recognition of ancient scripts in cultural heritage |
-| Time Series Forecasting | Time Series Forecasting Module | [Online Experience](https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter) | Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis | Stock prediction, climate forecasting, disease spread prediction, energy demand forecasting, traffic flow prediction, product lifecycle prediction, and electric load forecasting |
+<table>
+  <tr>
+    <th width="10%">Pipeline Name</th>
+    <th width="10%">Pipeline Modules</th>
+    <th width="10%">Baidu AIStudio Community Experience URL</th>
+    <th width="50%">Pipeline Introduction</th>
+    <th width="20%">Applicable Scenarios</th>
+  </tr>
+  <tr>
+    <td>General Image Classification</td>
+    <td>Image Classification</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100061/webUI">Online Experience</a></td>
+    <td>Image classification is a technique that assigns images to predefined categories. It is widely used in object recognition, scene understanding, and automatic annotation. Image classification can identify various objects such as animals, plants, traffic signs, etc., and categorize them based on their features. By leveraging deep learning models, image classification can automatically extract image features and perform accurate classification. The General Image Classification Pipeline is designed to solve image classification tasks for given images.</td>
+    <td>
+      <ul>
+        <li>Automatic classification and recognition of product images</li>
+        <li>Real-time monitoring of defective products on production lines</li>
+        <li>Personnel recognition in security surveillance</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Object Detection</td>
+    <td>Object Detection</td>
+    <td><a href="https://aistudio.baidu.com/community/app/70230/webUI">Online Experience</a></td>
+    <td>Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only recognizes what objects are in the image, such as people, cars, and animals, but also accurately determines the specific location of each object, usually represented by a rectangular box. This technology is widely used in autonomous driving, surveillance systems, and smart photo albums, relying on deep learning models (e.g., YOLO, Faster R-CNN) that efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content.</td>
+    <td>
+      <ul>
+        <li>Tracking moving objects in video surveillance</li>
+        <li>Vehicle detection in autonomous driving</li>
+        <li>Defect detection in industrial manufacturing</li>
+        <li>Shelf product detection in retail</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td>General Semantic Segmentation</td>
+    <td>Semantic Segmentation</td>
+    <td><a href="https://aistudio.baidu.com/community/app/100062/webUI?source=appCenter">Online Experience</a></td>
+    <td>Semantic segmentation is a computer vision technique that assigns each pixel in an image to a specific category, enabling detailed understanding of image content. Semantic segmentation not only identifies the types of objects in an image but also classifies each pixel, allowing entire regions of the same category to be marked. For example, in a street scene image, semantic segmentation can distinguish pedestrians, cars, sky, and roads at the pixel level, forming a detailed label map. This technology is widely used in autonomous driving, medical image analysis, and human-computer interaction, often relying on deep learning models (e.g., FCN, U-Net) that use Convolutional Neural Networks (CNNs) to extract features and achieve high-precision pixel-level classification, providing a foundation for further intelligent analysis.</td>
+    <td>
+      <ul>
+        <li>Analysis of satellite images in Geographic Information Systems</li>
+        <li>Segmentation of obstacles and passable areas in robot vision</li>
+        <li>Separation of foreground and background in film production</li>
+      </ul>
+    </td>
+  </tr>
+  <tr>
+    <td rowspan = 2>General OCR</td>
+    <td >Text Detection</td>
+    <td rowspan = 2><a href="https://aistudio.baidu.com/community/app/91660/webUI?source=appMineRecent">Online Experience</a></td>
+    <td rowspan = 2>OCR (Optical Character Recognition) is a technology that converts text in images into editable text. It is widely used in document digitization, information extraction, and data processing. OCR can recognize printed text, handwritten text, and even certain types of fonts and symbols. The General OCR Pipeline is designed to solve text recognition tasks, extracting text information from images and outputting it in text form. PP-OCRv4 is an end-to-end OCR system that achieves millisecond-level text content prediction on CPUs, achieving state-of-the-art (SOTA) performance in general scenarios. Based on this project, developers from academia, industry, and research have quickly implemented various OCR applications covering general, manufacturing, finance, transportation.</td>
+    <td rowspan = 2>
+      <ul>
+        <li>Document digitization</li>
+        <li>Information extraction</li>
+        <li>Data processing</li>
+      </ul>
+    </td>
+  </tr>
+    <tr>
+    <td>Text Recognition</td>
+  </tr>
+    <tr>
+        <td>Time Series Forecasting</td>
+        <td>Time Series Forecasting Module</td>
+        <td><a href="https://aistudio.baidu.com/community/app/105706/webUI?source=appCenter">Online Experience</a></td>
+        <td>Time series forecasting is a technique that utilizes historical data to predict future trends by analyzing patterns in time series data. It is widely applied in financial markets, weather forecasting, and sales prediction. Time series forecasting typically employs statistical methods or deep learning models (such as LSTM, ARIMA, etc.), which can handle time dependencies in data to provide accurate predictions, assisting decision-makers in better planning and response. This technology plays a crucial role in many industries, including energy management, supply chain optimization, and market analysis</td>
+        <td>
+    <ul>
+        <li>Stock prediction</li>
+        <li>climate forecasting</li>
+        <li>disease spread prediction</li>
+        <li>energy demand forecasting</li>
+        <li>traffic flow prediction</li>
+        <li>product lifecycle prediction</li>
+        <li>electric load forecasting</li>
+      </ul>
+      </td>
+    </tr>
+</table>
 
 ## 2. Featured Pipelines
 Not supported yet, please stay tuned!