|
|
@@ -0,0 +1,190 @@
|
|
|
+# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+from __future__ import absolute_import
|
|
|
+import os.path as osp
|
|
|
+import random
|
|
|
+import copy
|
|
|
+import json
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+from pycocotools.coco import COCO
|
|
|
+from pycocotools.mask import decode
|
|
|
+import paddlex.utils.logging as logging
|
|
|
+from .voc import VOCDetection
|
|
|
+from .dataset import is_pic
|
|
|
+from .dataset import get_encoding
|
|
|
+
|
|
|
+class EasyDataDet(VOCDetection):
|
|
|
+ """读取EasyDataDet格式的检测数据集,并对样本进行相应的处理。
|
|
|
+
|
|
|
+ Args:
|
|
|
+ data_dir (str): 数据集所在的目录路径。
|
|
|
+ file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
|
|
|
+ label_list (str): 描述数据集包含的类别信息文件路径。
|
|
|
+ transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
|
|
|
+ num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
|
|
|
+ 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
|
|
|
+ 一半。
|
|
|
+ buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。
|
|
|
+ parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'
|
|
|
+ 线程和'process'进程两种方式。默认为'thread'(Windows和Mac下会强制使用thread,该参数无效)。
|
|
|
+ shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self,
|
|
|
+ data_dir,
|
|
|
+ file_list,
|
|
|
+ label_list,
|
|
|
+ transforms=None,
|
|
|
+ num_workers='auto',
|
|
|
+ buffer_size=100,
|
|
|
+ parallel_method='process',
|
|
|
+ shuffle=False):
|
|
|
+ super(VOCDetection, self).__init__(
|
|
|
+ transforms=transforms,
|
|
|
+ num_workers=num_workers,
|
|
|
+ buffer_size=buffer_size,
|
|
|
+ parallel_method=parallel_method,
|
|
|
+ shuffle=shuffle)
|
|
|
+ self.file_list = list()
|
|
|
+ self.labels = list()
|
|
|
+ self._epoch = 0
|
|
|
+
|
|
|
+ annotations = {}
|
|
|
+ annotations['images'] = []
|
|
|
+ annotations['categories'] = []
|
|
|
+ annotations['annotations'] = []
|
|
|
+
|
|
|
+ cname2cid = {}
|
|
|
+ label_id = 1
|
|
|
+ with open(label_list, encoding=get_encoding(label_list)) as fr:
|
|
|
+ for line in fr.readlines():
|
|
|
+ cname2cid[line.strip()] = label_id
|
|
|
+ label_id += 1
|
|
|
+ self.labels.append(line.strip())
|
|
|
+ logging.info("Starting to read file list from dataset...")
|
|
|
+ for k, v in cname2cid.items():
|
|
|
+ annotations['categories'].append({
|
|
|
+ 'supercategory': 'component',
|
|
|
+ 'id': v,
|
|
|
+ 'name': k
|
|
|
+ })
|
|
|
+
|
|
|
+ ct = 0
|
|
|
+ ann_ct = 0
|
|
|
+ with open(file_list, encoding=get_encoding(file_list)) as f:
|
|
|
+ for line in f:
|
|
|
+ img_file, json_file = [osp.join(data_dir, x) \
|
|
|
+ for x in line.strip().split()[:2]]
|
|
|
+ if not is_pic(img_file):
|
|
|
+ continue
|
|
|
+ if not osp.isfile(json_file):
|
|
|
+ continue
|
|
|
+ if not osp.exists(img_file):
|
|
|
+ raise IOError(
|
|
|
+ 'The image file {} is not exist!'.format(img_file))
|
|
|
+ with open(json_file, mode='r', \
|
|
|
+ encoding=get_encoding(label_list)) as j:
|
|
|
+ json_info = json.load(j)
|
|
|
+ im_id = np.array([ct])
|
|
|
+ im = cv2.imread(img_file)
|
|
|
+ im_w = im.shape[1]
|
|
|
+ im_h = im.shape[0]
|
|
|
+ objs = json_info['labels']
|
|
|
+ gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
|
|
|
+ gt_class = np.zeros((len(objs), 1), dtype=np.int32)
|
|
|
+ gt_score = np.ones((len(objs), 1), dtype=np.float32)
|
|
|
+ is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
|
|
|
+ difficult = np.zeros((len(objs), 1), dtype=np.int32)
|
|
|
+ gt_poly = [None] * len(objs)
|
|
|
+ for i, obj in enumerate(objs):
|
|
|
+ cname = obj['name']
|
|
|
+ gt_class[i][0] = cname2cid[cname]
|
|
|
+ x1 = max(0, obj['x1'])
|
|
|
+ y1 = max(0, obj['y1'])
|
|
|
+ x2 = min(im_w - 1, obj['x2'])
|
|
|
+ y2 = min(im_h - 1, obj['y2'])
|
|
|
+ gt_bbox[i] = [x1, y1, x2, y2]
|
|
|
+ is_crowd[i][0] = 0
|
|
|
+ if 'mask' in obj:
|
|
|
+ mask_dict = {}
|
|
|
+ mask_dict['size'] = [im_h, im_w]
|
|
|
+ mask_dict['counts'] = obj['mask'].encode()
|
|
|
+ mask = decode(mask_dict)
|
|
|
+ gt_poly[i] = self.mask2polygon(mask)
|
|
|
+ annotations['annotations'].append({
|
|
|
+ 'iscrowd':
|
|
|
+ 0,
|
|
|
+ 'image_id':
|
|
|
+ int(im_id[0]),
|
|
|
+ 'bbox': [x1, y1, x2 - x1 + 1, y2 - y1 + 1],
|
|
|
+ 'area':
|
|
|
+ float((x2 - x1 + 1) * (y2 - y1 + 1)),
|
|
|
+ 'segmentation':
|
|
|
+ [] if gt_poly[i] is None else gt_poly[i],
|
|
|
+ 'category_id':
|
|
|
+ cname2cid[cname],
|
|
|
+ 'id':
|
|
|
+ ann_ct,
|
|
|
+ 'difficult':
|
|
|
+ 0
|
|
|
+ })
|
|
|
+ ann_ct += 1
|
|
|
+ im_info = {
|
|
|
+ 'im_id': im_id,
|
|
|
+ 'origin_shape': np.array([im_h, im_w]).astype('int32'),
|
|
|
+ }
|
|
|
+ label_info = {
|
|
|
+ 'is_crowd': is_crowd,
|
|
|
+ 'gt_class': gt_class,
|
|
|
+ 'gt_bbox': gt_bbox,
|
|
|
+ 'gt_score': gt_score,
|
|
|
+ 'difficult': difficult
|
|
|
+ }
|
|
|
+ if None not in gt_poly:
|
|
|
+ label_info['gt_poly'] = gt_poly
|
|
|
+ voc_rec = (im_info, label_info)
|
|
|
+ if len(objs) != 0:
|
|
|
+ self.file_list.append([img_file, voc_rec])
|
|
|
+ ct += 1
|
|
|
+ annotations['images'].append({
|
|
|
+ 'height':
|
|
|
+ im_h,
|
|
|
+ 'width':
|
|
|
+ im_w,
|
|
|
+ 'id':
|
|
|
+ int(im_id[0]),
|
|
|
+ 'file_name':
|
|
|
+ osp.split(img_file)[1]
|
|
|
+ })
|
|
|
+
|
|
|
+ if not len(self.file_list) > 0:
|
|
|
+ raise Exception('not found any voc record in %s' % (file_list))
|
|
|
+ logging.info("{} samples in file {}".format(
|
|
|
+ len(self.file_list), file_list))
|
|
|
+ self.num_samples = len(self.file_list)
|
|
|
+ self.coco_gt = COCO()
|
|
|
+ self.coco_gt.dataset = annotations
|
|
|
+ self.coco_gt.createIndex()
|
|
|
+
|
|
|
+ def mask2polygon(self, mask):
|
|
|
+ contours, hierarchy = cv2.findContours(
|
|
|
+ (mask).astype(np.uint8), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
+ segmentation = []
|
|
|
+ for contour in contours:
|
|
|
+ contour_list = contour.flatten().tolist()
|
|
|
+ if len(contour_list) > 4:
|
|
|
+ segmentation.append(contour_list)
|
|
|
+ return segmentation
|