|
|
@@ -6,7 +6,7 @@ PaddleX 支持统计模型推理耗时,需通过环境变量进行设置,具
|
|
|
* `PADDLE_PDX_INFER_BENCHMARK_WARMUP`:设置 warm up,在开始测试前,使用随机数据循环迭代 n 次,默认为 `0`;
|
|
|
* `PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE`: 设置随机数据的尺寸,默认为 `224`;
|
|
|
* `PADDLE_PDX_INFER_BENCHMARK_ITER`:使用随机数据进行 Benchmark 测试的循环次数,仅当输入数据为 `None` 时,将使用随机数据进行测试;
|
|
|
-* `PADDLE_PDX_INFER_BENCHMARK_OUTPUT`:用于设置保存本次 benchmark 指标到 `txt` 文件,如 `./benchmark.txt`,默认为 `None`,表示不保存 Benchmark 指标;
|
|
|
+* `PADDLE_PDX_INFER_BENCHMARK_OUTPUT`:用于设置保存的目录,如 `./benchmark`,默认为 `None`,表示不保存 Benchmark 指标;
|
|
|
|
|
|
使用示例如下:
|
|
|
|
|
|
@@ -15,55 +15,60 @@ PADDLE_PDX_INFER_BENCHMARK=True \
|
|
|
PADDLE_PDX_INFER_BENCHMARK_WARMUP=5 \
|
|
|
PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE=320 \
|
|
|
PADDLE_PDX_INFER_BENCHMARK_ITER=10 \
|
|
|
-PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark.txt \
|
|
|
+PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark \
|
|
|
python main.py \
|
|
|
-c ./paddlex/configs/object_detection/PicoDet-XS.yaml \
|
|
|
-o Global.mode=predict \
|
|
|
-o Predict.model_dir=None \
|
|
|
+ -o Predict.batch_size=2 \
|
|
|
-o Predict.input=None
|
|
|
```
|
|
|
|
|
|
在开启 Benchmark 后,将自动打印 benchmark 指标:
|
|
|
|
|
|
```
|
|
|
-+----------------+-----------------+------+---------------+
|
|
|
-| Stage | Total Time (ms) | Nums | Avg Time (ms) |
|
|
|
-+----------------+-----------------+------+---------------+
|
|
|
-| ReadCmp | 185.48870087 | 10 | 18.54887009 |
|
|
|
-| Resize | 16.95227623 | 30 | 0.56507587 |
|
|
|
-| Normalize | 41.12100601 | 30 | 1.37070020 |
|
|
|
-| ToCHWImage | 0.05745888 | 30 | 0.00191530 |
|
|
|
-| Copy2GPU | 14.58549500 | 10 | 1.45854950 |
|
|
|
-| Infer | 100.14462471 | 10 | 10.01446247 |
|
|
|
-| Copy2CPU | 9.54508781 | 10 | 0.95450878 |
|
|
|
-| DetPostProcess | 0.56767464 | 30 | 0.01892249 |
|
|
|
-+----------------+-----------------+------+---------------+
|
|
|
-+-------------+-----------------+------+---------------+
|
|
|
-| Stage | Total Time (ms) | Nums | Avg Time (ms) |
|
|
|
-+-------------+-----------------+------+---------------+
|
|
|
-| PreProcess | 243.61944199 | 30 | 8.12064807 |
|
|
|
-| Inference | 124.27520752 | 30 | 4.14250692 |
|
|
|
-| PostProcess | 0.56767464 | 30 | 0.01892249 |
|
|
|
-| End2End | 379.70948219 | 30 | 12.65698274 |
|
|
|
-| WarmUp | 9465.68179131 | 5 | 1893.13635826 |
|
|
|
-+-------------+-----------------+------+---------------+
|
|
|
++----------------+-----------------+-----------------+------------------------+
|
|
|
+| Component | Total Time (ms) | Number of Calls | Avg Time Per Call (ms) |
|
|
|
++----------------+-----------------+-----------------+------------------------+
|
|
|
+| ReadCmp | 102.39458084 | 10 | 10.23945808 |
|
|
|
+| Resize | 11.20400429 | 20 | 0.56020021 |
|
|
|
+| Normalize | 34.11078453 | 20 | 1.70553923 |
|
|
|
+| ToCHWImage | 0.05555153 | 20 | 0.00277758 |
|
|
|
+| Copy2GPU | 9.10568237 | 10 | 0.91056824 |
|
|
|
+| Infer | 98.22225571 | 10 | 9.82222557 |
|
|
|
+| Copy2CPU | 14.30845261 | 10 | 1.43084526 |
|
|
|
+| DetPostProcess | 0.45251846 | 20 | 0.02262592 |
|
|
|
++----------------+-----------------+-----------------+------------------------+
|
|
|
++-------------+-----------------+---------------------+----------------------------+
|
|
|
+| Stage | Total Time (ms) | Number of Instances | Avg Time Per Instance (ms) |
|
|
|
++-------------+-----------------+---------------------+----------------------------+
|
|
|
+| PreProcess | 147.76492119 | 20 | 7.38824606 |
|
|
|
+| Inference | 121.63639069 | 20 | 6.08181953 |
|
|
|
+| PostProcess | 0.45251846 | 20 | 0.02262592 |
|
|
|
+| End2End | 294.03519630 | 20 | 14.70175982 |
|
|
|
+| WarmUp | 7937.82591820 | 5 | 1587.56518364 |
|
|
|
++-------------+-----------------+---------------------+----------------------------+
|
|
|
```
|
|
|
|
|
|
-在 Benchmark 结果中,会统计该模型全部组件(`Component`)的总耗时(`Total Time`,单位为“毫秒”)、**调用次数**(`Nums`)、**调用**平均执行耗时(`Avg Time`,单位为“毫秒”),以及按预热(`WarmUp`)、预处理(`PreProcess`)、模型推理(`Inference`)、后处理(`PostProcess`)和端到端(`End2End`)进行划分的耗时统计,包括每个阶段的总耗时(`Total Time`,单位为“毫秒”)、**样本数**(`Nums`)和**单样本**平均执行耗时(`Avg Time`,单位为“毫秒”),同时,保存相关指标会到本地 `./benchmark.csv` 文件中:
|
|
|
+在 Benchmark 结果中,会统计该模型全部组件(`Component`)的总耗时(`Total Time`,单位为“毫秒”)、**调用次数**(`Number of Calls`)、**调用**平均执行耗时(`Avg Time Per Call`,单位“毫秒”),以及按预热(`WarmUp`)、预处理(`PreProcess`)、模型推理(`Inference`)、后处理(`PostProcess`)和端到端(`End2End`)进行划分的耗时统计,包括每个阶段的总耗时(`Total Time`,单位为“毫秒”)、**样本数**(`Number of Instances`)和**单样本**平均执行耗时(`Avg Time Per Instance`,单位“毫秒”),同时,上述指标会保存到到本地: `./benchmark/detail.csv` 和 `./benchmark/summary.csv`:
|
|
|
|
|
|
```csv
|
|
|
-Stage,Total Time (ms),Nums,Avg Time (ms)
|
|
|
-ReadCmp,0.18548870086669922,10,0.018548870086669923
|
|
|
-Resize,0.0169522762298584,30,0.0005650758743286133
|
|
|
-Normalize,0.04112100601196289,30,0.001370700200398763
|
|
|
-ToCHWImage,5.745887756347656e-05,30,1.915295918782552e-06
|
|
|
-Copy2GPU,0.014585494995117188,10,0.0014585494995117188
|
|
|
-Infer,0.10014462471008301,10,0.0100144624710083
|
|
|
-Copy2CPU,0.009545087814331055,10,0.0009545087814331055
|
|
|
-DetPostProcess,0.0005676746368408203,30,1.892248789469401e-05
|
|
|
-PreProcess,0.24361944198608398,30,0.0081206480662028
|
|
|
-Inference,0.12427520751953125,30,0.0041425069173177086
|
|
|
-PostProcess,0.0005676746368408203,30,1.892248789469401e-05
|
|
|
-End2End,0.37970948219299316,30,0.012656982739766438
|
|
|
-WarmUp,9.465681791305542,5,1.8931363582611085
|
|
|
+Component,Total Time (ms),Number of Calls,Avg Time Per Call (ms)
|
|
|
+ReadCmp,0.10199093818664551,10,0.01019909381866455
|
|
|
+Resize,0.011309385299682617,20,0.0005654692649841309
|
|
|
+Normalize,0.035140275955200195,20,0.0017570137977600097
|
|
|
+ToCHWImage,4.744529724121094e-05,20,2.3722648620605467e-06
|
|
|
+Copy2GPU,0.00861215591430664,10,0.000861215591430664
|
|
|
+Infer,0.820899248123169,10,0.08208992481231689
|
|
|
+Copy2CPU,0.006002187728881836,10,0.0006002187728881836
|
|
|
+DetPostProcess,0.0004436969757080078,20,2.218484878540039e-05
|
|
|
+```
|
|
|
+
|
|
|
+```csv
|
|
|
+Stage,Total Time (ms),Number of Instance,Avg Time Per Instance (ms)
|
|
|
+PreProcess,0.14848804473876953,20,0.007424402236938477
|
|
|
+Inference,0.8355135917663574,20,0.04177567958831787
|
|
|
+PostProcess,0.0004436969757080078,20,2.218484878540039e-05
|
|
|
+End2End,1.0054960250854492,20,0.05027480125427246
|
|
|
+WarmUp,8.869974851608276,5,1.7739949703216553
|
|
|
```
|