|
|
@@ -0,0 +1,90 @@
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+from typing import Any, Union, Dict, List
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+from .result import MLClassResult
|
|
|
+from .processors import MultiLabelThreshOutput
|
|
|
+from ..image_classification import ClasPredictor
|
|
|
+from ....modules.multilabel_classification.model_list import MODELS
|
|
|
+
|
|
|
+
|
|
|
+class MLClasPredictor(ClasPredictor):
|
|
|
+ """MLClasPredictor that inherits from BasicPredictor."""
|
|
|
+
|
|
|
+ entities = MODELS
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ threshold: Union[float, dict, list, None] = None,
|
|
|
+ *args: List,
|
|
|
+ **kwargs: Dict
|
|
|
+ ) -> None:
|
|
|
+ """Initializes MLClasPredictor.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ threshold (float, dict, optional): The threshold predictions to return. If None, it will be depending on config of inference or predict. Defaults to None.
|
|
|
+ *args: Arbitrary positional arguments passed to the superclass.
|
|
|
+ **kwargs: Arbitrary keyword arguments passed to the superclass.
|
|
|
+ """
|
|
|
+ self.threshold = threshold
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+
|
|
|
+ def _get_result_class(self) -> type:
|
|
|
+ """Returns the result class, TopkResult.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ type: The TopkResult class.
|
|
|
+ """
|
|
|
+
|
|
|
+ return MLClassResult
|
|
|
+
|
|
|
+ def process(
|
|
|
+ self,
|
|
|
+ batch_data: List[Union[str, np.ndarray]],
|
|
|
+ threshold: Union[int, dict, None] = None,
|
|
|
+ ) -> Dict[str, Any]:
|
|
|
+ """
|
|
|
+ Process a batch of data through the preprocessing, inference, and postprocessing.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
|
|
|
+ threshold (float, dict, optional): The threshold predictions to return. If None, it will be depending on config of inference or predict. Defaults to None.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
|
|
|
+ """
|
|
|
+ batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data)
|
|
|
+ batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs)
|
|
|
+ batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
|
|
|
+ batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
|
|
|
+ x = self.preprocessors["ToBatch"](imgs=batch_imgs)
|
|
|
+ batch_preds = self.infer(x=x)
|
|
|
+ batch_class_ids, batch_scores, batch_label_names = self.postprocessors[
|
|
|
+ "MultiLabelThreshOutput"
|
|
|
+ ](preds=batch_preds, threshold=threshold or self.threshold)
|
|
|
+ return {
|
|
|
+ "input_path": batch_data,
|
|
|
+ "input_img": batch_raw_imgs,
|
|
|
+ "class_ids": batch_class_ids,
|
|
|
+ "scores": batch_scores,
|
|
|
+ "label_names": batch_label_names,
|
|
|
+ }
|
|
|
+
|
|
|
+ @ClasPredictor.register("MultiLabelThreshOutput")
|
|
|
+ def build_threshoutput(self, threshold: Union[float, dict, list], label_list=None):
|
|
|
+ if self.threshold is None:
|
|
|
+ self.threshold = threshold
|
|
|
+ return "MultiLabelThreshOutput", MultiLabelThreshOutput(class_ids=label_list)
|