|
|
@@ -0,0 +1,216 @@
|
|
|
+# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import sys
|
|
|
+import os
|
|
|
+import os.path as osp
|
|
|
+import time
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import yaml
|
|
|
+from six import text_type as _text_type
|
|
|
+from paddlelite.lite import *
|
|
|
+
|
|
|
+
|
|
|
+class Predictor:
|
|
|
+ def __init__(self, model_nb, model_yaml, thread_num, shape):
|
|
|
+ if not osp.exists(model_nb):
|
|
|
+ print("model nb file is not exists in {}".format(model_xml))
|
|
|
+ self.model_nb = model_nb
|
|
|
+ self.shape = shape
|
|
|
+ config = MobileConfig()
|
|
|
+ config.set_model_from_file(model_nb)
|
|
|
+ config.set_threads(thread_num)
|
|
|
+ if not osp.exists(model_yaml):
|
|
|
+ print("model yaml file is not exists in {}".format(model_yaml))
|
|
|
+ with open(model_yaml) as f:
|
|
|
+ self.info = yaml.load(f.read(), Loader=yaml.Loader)
|
|
|
+ self.model_type = self.info['_Attributes']['model_type']
|
|
|
+ self.model_name = self.info['Model']
|
|
|
+ self.num_classes = self.info['_Attributes']['num_classes']
|
|
|
+ self.labels = self.info['_Attributes']['labels']
|
|
|
+ if self.info['Model'] == 'MaskRCNN':
|
|
|
+ if self.info['_init_params']['with_fpn']:
|
|
|
+ self.mask_head_resolution = 28
|
|
|
+ else:
|
|
|
+ self.mask_head_resolution = 14
|
|
|
+ transforms_mode = self.info.get('TransformsMode', 'RGB')
|
|
|
+ if transforms_mode == 'RGB':
|
|
|
+ to_rgb = True
|
|
|
+ else:
|
|
|
+ to_rgb = False
|
|
|
+ self.transforms = self.build_transforms(self.info['Transforms'],
|
|
|
+ to_rgb)
|
|
|
+ self.predictor = create_paddle_predictor(config)
|
|
|
+ self.total_time = 0
|
|
|
+ self.count_num = 0
|
|
|
+
|
|
|
+ def build_transforms(self, transforms_info, to_rgb=True):
|
|
|
+ if self.model_type == "classifier":
|
|
|
+ import transforms.cls_transforms as transforms
|
|
|
+ elif self.model_type == "detector":
|
|
|
+ import transforms.det_transforms as transforms
|
|
|
+ elif self.model_type == "segmenter":
|
|
|
+ import transforms.seg_transforms as transforms
|
|
|
+ op_list = list()
|
|
|
+ for op_info in transforms_info:
|
|
|
+ op_name = list(op_info.keys())[0]
|
|
|
+ op_attr = op_info[op_name]
|
|
|
+ if not hasattr(transforms, op_name):
|
|
|
+ raise Exception(
|
|
|
+ "There's no operator named '{}' in transforms of {}".
|
|
|
+ format(op_name, self.model_type))
|
|
|
+ op_list.append(getattr(transforms, op_name)(**op_attr))
|
|
|
+ eval_transforms = transforms.Compose(op_list)
|
|
|
+ if hasattr(eval_transforms, 'to_rgb'):
|
|
|
+ eval_transforms.to_rgb = to_rgb
|
|
|
+ self.arrange_transforms(eval_transforms)
|
|
|
+ return eval_transforms
|
|
|
+
|
|
|
+ def arrange_transforms(self, eval_transforms):
|
|
|
+ if self.model_type == 'classifier':
|
|
|
+ import transforms.cls_transforms as transforms
|
|
|
+ arrange_transform = transforms.ArrangeClassifier
|
|
|
+ elif self.model_type == 'segmenter':
|
|
|
+ import transforms.seg_transforms as transforms
|
|
|
+ arrange_transform = transforms.ArrangeSegmenter
|
|
|
+ elif self.model_type == 'detector':
|
|
|
+ import transforms.det_transforms as transforms
|
|
|
+ arrange_name = 'Arrange{}'.format(self.model_name)
|
|
|
+ arrange_transform = getattr(transforms, arrange_name)
|
|
|
+ else:
|
|
|
+ raise Exception("Unrecognized model type: {}".format(
|
|
|
+ self.model_type))
|
|
|
+ if type(eval_transforms.transforms[-1]).__name__.startswith('Arrange'):
|
|
|
+ eval_transforms.transforms[-1] = arrange_transform(mode='test')
|
|
|
+ else:
|
|
|
+ eval_transforms.transforms.append(arrange_transform(mode='test'))
|
|
|
+
|
|
|
+ def raw_predict(self, preprocessed_input):
|
|
|
+ self.count_num += 1
|
|
|
+ input_tensor = self.predictor.get_input(0)
|
|
|
+ input_tensor.resize(self.shape)
|
|
|
+ input_tensor.set_float_data(preprocessed_input['image'])
|
|
|
+ if self.model_name == "YOLOv3":
|
|
|
+ input_size_tensor = self.predictor.get_input(1)
|
|
|
+ input_size_tensor.resize([1, 2])
|
|
|
+ input_size_tensor.set_float_data(preprocessed_input['im_size'])
|
|
|
+ #Start inference
|
|
|
+ start_time = time.time()
|
|
|
+ self.predictor.run()
|
|
|
+ time_use = time.time() - start_time
|
|
|
+ if (self.count_num >= 20):
|
|
|
+ self.total_time += time_use
|
|
|
+ if (self.count_num >= 120):
|
|
|
+ print("avgtime:", self.total_time * 10)
|
|
|
+
|
|
|
+ #Processing output blob
|
|
|
+ print("Processing output blob")
|
|
|
+ return
|
|
|
+
|
|
|
+ def preprocess(self, image):
|
|
|
+ res = dict()
|
|
|
+ if self.model_type == "classifier":
|
|
|
+ im, = self.transforms(image)
|
|
|
+ im = np.expand_dims(im, axis=0).copy()
|
|
|
+ im = im.flatten()
|
|
|
+ res['image'] = im
|
|
|
+ elif self.model_type == "detector":
|
|
|
+ if self.model_name == "YOLOv3":
|
|
|
+ im, im_shape = self.transforms(image)
|
|
|
+ im = np.expand_dims(im, axis=0).copy()
|
|
|
+ im_shape = np.expand_dims(im_shape, axis=0).copy()
|
|
|
+ res['image'] = im
|
|
|
+ res['im_size'] = im_shape
|
|
|
+ if self.model_name.count('RCNN') > 0:
|
|
|
+ im, im_resize_info, im_shape = self.transforms(image)
|
|
|
+ im = np.expand_dims(im, axis=0).copy()
|
|
|
+ im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
|
|
|
+ im_shape = np.expand_dims(im_shape, axis=0).copy()
|
|
|
+ res['image'] = im
|
|
|
+ res['im_info'] = im_resize_info
|
|
|
+ res['im_shape'] = im_shape
|
|
|
+ elif self.model_type == "segmenter":
|
|
|
+ im, im_info = self.transforms(image)
|
|
|
+ im = np.expand_dims(im, axis=0).copy()
|
|
|
+ #np.savetxt('./input_data.txt',im.flatten())
|
|
|
+ res['image'] = im
|
|
|
+ res['im_info'] = im_info
|
|
|
+ return res
|
|
|
+
|
|
|
+ def classifier_postprocess(self, topk=1):
|
|
|
+ output_tensor = self.predictor.get_output(0)
|
|
|
+ output_data = output_tensor.float_data()
|
|
|
+ true_topk = min(self.num_classes, topk)
|
|
|
+ pred_label = np.argsort(-np.array(output_data))[:true_topk]
|
|
|
+ result = [{
|
|
|
+ 'category_id': l,
|
|
|
+ 'category': self.labels[l],
|
|
|
+ 'score': output_data[l],
|
|
|
+ } for l in pred_label]
|
|
|
+ print(result)
|
|
|
+ return result
|
|
|
+
|
|
|
+ def segmenter_postprocess(self, preprocessed_inputs):
|
|
|
+ out_label_tensor = self.predictor.get_output(0)
|
|
|
+ out_label = out_label_tensor.float_data()
|
|
|
+ label_shape = tuple(out_label_tensor.shape())
|
|
|
+ label_map = np.array(out_label).astype('uint8')
|
|
|
+ label_map = label_map.reshap(label_shape)
|
|
|
+ label_map = np.squeeze(label_map)
|
|
|
+
|
|
|
+ out_score_tensor = self.predictor.get_output(1)
|
|
|
+ out_score = out_score_tensor.float_data()
|
|
|
+ score_shape = tuple(out_score_tensor.shape())
|
|
|
+ score_map = np.array(out_score)
|
|
|
+ score_map = score_map.reshap(score_shape)
|
|
|
+ score_map = np.transpose(score_map, (1, 2, 0))
|
|
|
+
|
|
|
+ im_info = preprocessed_inputs['im_info']
|
|
|
+ for info in im_info[::-1]:
|
|
|
+ if info[0] == 'resize':
|
|
|
+ w, h = info[1][1], info[1][0]
|
|
|
+ label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
|
|
|
+ score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
|
|
|
+ elif info[0] == 'padding':
|
|
|
+ w, h = info[1][1], info[1][0]
|
|
|
+ label_map = label_map[0:h, 0:w]
|
|
|
+ score_map = score_map[0:h, 0:w, :]
|
|
|
+ else:
|
|
|
+ raise Exception("Unexpected info '{}' in im_info".format(info[
|
|
|
+ 0]))
|
|
|
+ return {'label_map': label_map, 'score_map': score_map}
|
|
|
+
|
|
|
+ def detector_postprocess(self, preprocessed_inputs):
|
|
|
+ out_tensor = self.predictor.get_output(0)
|
|
|
+ out_data = out_tensor.float_data()
|
|
|
+ out_shape = tuple(out_tensor.shape())
|
|
|
+ out_data = np.array(out_data)
|
|
|
+ outputs = label_data.reshap(out_shape)
|
|
|
+
|
|
|
+ result = []
|
|
|
+ for out in outputs:
|
|
|
+ result.append(out.tolist())
|
|
|
+ return result
|
|
|
+
|
|
|
+ def predict(self, image, topk=1, threshold=0.5):
|
|
|
+ preprocessed_input = self.preprocess(image)
|
|
|
+ self.raw_predict(preprocessed_input)
|
|
|
+ if self.model_type == "classifier":
|
|
|
+ results = self.classifier_postprocess(topk)
|
|
|
+ elif self.model_type == "detector":
|
|
|
+ results = self.detector_postprocess(preprocessed_input)
|
|
|
+ elif self.model_type == "segmenter":
|
|
|
+ pass
|
|
|
+ results = self.segmenter_postprocess(preprocessed_input)
|