|
|
@@ -135,9 +135,9 @@ bool Model::load_config(const std::string& yaml_input) {
|
|
|
labels[index] = item.as<std::string>();
|
|
|
}
|
|
|
if (config["_init_params"]["input_channel"].IsDefined()) {
|
|
|
- input_channel = config["_init_params"]["input_channel"].as<int>();
|
|
|
+ input_channel_ = config["_init_params"]["input_channel"].as<int>();
|
|
|
} else {
|
|
|
- input_channel = 3;
|
|
|
+ input_channel_ = 3;
|
|
|
}
|
|
|
return true;
|
|
|
}
|
|
|
@@ -184,7 +184,7 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
|
|
|
auto in_tensor = predictor_->GetInputTensor("image");
|
|
|
int h = inputs_.new_im_size_[0];
|
|
|
int w = inputs_.new_im_size_[1];
|
|
|
- in_tensor->Reshape({1, input_channel, h, w});
|
|
|
+ in_tensor->Reshape({1, input_channel_, h, w});
|
|
|
in_tensor->copy_from_cpu(inputs_.im_data_.data());
|
|
|
predictor_->ZeroCopyRun();
|
|
|
// get result
|
|
|
@@ -231,12 +231,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
|
|
|
auto in_tensor = predictor_->GetInputTensor("image");
|
|
|
int h = inputs_batch_[0].new_im_size_[0];
|
|
|
int w = inputs_batch_[0].new_im_size_[1];
|
|
|
- in_tensor->Reshape({batch_size, input_channel, h, w});
|
|
|
- std::vector<float> inputs_data(batch_size * input_channel * h * w);
|
|
|
+ in_tensor->Reshape({batch_size, input_channel_, h, w});
|
|
|
+ std::vector<float> inputs_data(batch_size * input_channel_ * h * w);
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
|
std::copy(inputs_batch_[i].im_data_.begin(),
|
|
|
inputs_batch_[i].im_data_.end(),
|
|
|
- inputs_data.begin() + i * input_channel * h * w);
|
|
|
+ inputs_data.begin() + i * input_channel_ * h * w);
|
|
|
}
|
|
|
in_tensor->copy_from_cpu(inputs_data.data());
|
|
|
// in_tensor->copy_from_cpu(inputs_.im_data_.data());
|
|
|
@@ -290,7 +290,7 @@ bool Model::predict(const cv::Mat& im, DetResult* result) {
|
|
|
int h = inputs_.new_im_size_[0];
|
|
|
int w = inputs_.new_im_size_[1];
|
|
|
auto im_tensor = predictor_->GetInputTensor("image");
|
|
|
- im_tensor->Reshape({1, input_channel, h, w});
|
|
|
+ im_tensor->Reshape({1, input_channel_, h, w});
|
|
|
im_tensor->copy_from_cpu(inputs_.im_data_.data());
|
|
|
|
|
|
if (name == "YOLOv3" || name == "PPYOLO") {
|
|
|
@@ -444,12 +444,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
|
|
|
int h = inputs_batch_[0].new_im_size_[0];
|
|
|
int w = inputs_batch_[0].new_im_size_[1];
|
|
|
auto im_tensor = predictor_->GetInputTensor("image");
|
|
|
- im_tensor->Reshape({batch_size, input_channel, h, w});
|
|
|
- std::vector<float> inputs_data(batch_size * input_channel * h * w);
|
|
|
+ im_tensor->Reshape({batch_size, input_channel_, h, w});
|
|
|
+ std::vector<float> inputs_data(batch_size * input_channel_ * h * w);
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
|
std::copy(inputs_batch_[i].im_data_.begin(),
|
|
|
inputs_batch_[i].im_data_.end(),
|
|
|
- inputs_data.begin() + i * input_channel * h * w);
|
|
|
+ inputs_data.begin() + i * input_channel_ * h * w);
|
|
|
}
|
|
|
im_tensor->copy_from_cpu(inputs_data.data());
|
|
|
if (name == "YOLOv3" || name == "PPYOLO") {
|
|
|
@@ -589,7 +589,7 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
|
|
|
int h = inputs_.new_im_size_[0];
|
|
|
int w = inputs_.new_im_size_[1];
|
|
|
auto im_tensor = predictor_->GetInputTensor("image");
|
|
|
- im_tensor->Reshape({1, input_channel, h, w});
|
|
|
+ im_tensor->Reshape({1, input_channel_, h, w});
|
|
|
im_tensor->copy_from_cpu(inputs_.im_data_.data());
|
|
|
|
|
|
// predict
|
|
|
@@ -703,12 +703,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
|
|
|
int h = inputs_batch_[0].new_im_size_[0];
|
|
|
int w = inputs_batch_[0].new_im_size_[1];
|
|
|
auto im_tensor = predictor_->GetInputTensor("image");
|
|
|
- im_tensor->Reshape({batch_size, input_channel, h, w});
|
|
|
- std::vector<float> inputs_data(batch_size * input_channel * h * w);
|
|
|
+ im_tensor->Reshape({batch_size, input_channel_, h, w});
|
|
|
+ std::vector<float> inputs_data(batch_size * input_channel_ * h * w);
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
|
std::copy(inputs_batch_[i].im_data_.begin(),
|
|
|
inputs_batch_[i].im_data_.end(),
|
|
|
- inputs_data.begin() + i * input_channel * h * w);
|
|
|
+ inputs_data.begin() + i * input_channel_ * h * w);
|
|
|
}
|
|
|
im_tensor->copy_from_cpu(inputs_data.data());
|
|
|
// im_tensor->copy_from_cpu(inputs_.im_data_.data());
|