|
|
@@ -379,6 +379,16 @@ SVTRv2 is a server text recognition model developed by the OpenOCR team of Fudan
|
|
|
<th>Introduction</th>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
+<td>en_PP-OCRv5_mobile_rec</td>
|
|
|
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
|
|
|
+en_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/en_PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td> 85.25</td>
|
|
|
+<td>-</td>
|
|
|
+<td>-</td>
|
|
|
+<td>7.5</td>
|
|
|
+<td>The ultra-lightweight English recognition model trained based on the PP-OCRv5 recognition model supports the recognition of English and numbers.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
<td>en_PP-OCRv4_mobile_rec</td>
|
|
|
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
<td> 70.39</td>
|
|
|
@@ -439,6 +449,26 @@ eslav_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle
|
|
|
<td>An East Slavic language recognition model trained based on the PP-OCRv5 recognition framework. Supports East Slavic languages, English and numeric text recognition.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
+<td>th_PP-OCRv5_mobile_rec</td>
|
|
|
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
|
|
|
+th_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/th_PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>82.68</td>
|
|
|
+<td>-</td>
|
|
|
+<td>-</td>
|
|
|
+<td>7.5</td>
|
|
|
+<td>The Thai recognition model trained based on the PP-OCRv5 recognition model supports recognition of Thai, English, and numbers.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>el_PP-OCRv5_mobile_rec</td>
|
|
|
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
|
|
|
+el_PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/el_PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>89.28</td>
|
|
|
+<td>-</td>
|
|
|
+<td>-</td>
|
|
|
+<td>7.5</td>
|
|
|
+<td>The Greek recognition model trained based on the PP-OCRv5 recognition model supports recognition of Greek, English, and numbers.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
<td>korean_PP-OCRv3_mobile_rec</td>
|
|
|
<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/korean_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
<td>60.21</td>
|
|
|
@@ -948,6 +978,18 @@ In the above Python script, the following steps are executed:
|
|
|
<td>The file path for saving, supporting both directory and file paths</td>
|
|
|
<td>None</td>
|
|
|
</tr>
|
|
|
+<tr>
|
|
|
+<td><code>return_word_box</code></td>
|
|
|
+<td>Whether to return the position coordinates of each character</td>
|
|
|
+<td><code>bool|None</code></td>
|
|
|
+<td>
|
|
|
+<ul>
|
|
|
+<li><b>bool</b>:<code>True</code> 或者 <code>False</code>;</li>
|
|
|
+<li><b>None</b>:If set to<code>None</code>, the default value initialized by the pipeline will be used, which is initialized as<code>False</code>;</li>
|
|
|
+</ul>
|
|
|
+</td>
|
|
|
+<td><code>None</code></td>
|
|
|
+</tr>
|
|
|
</table>
|
|
|
|
|
|
- Calling the `print()` method will print the result to the terminal. The printed content is explained as follows:
|
|
|
@@ -992,6 +1034,10 @@ In the above Python script, the following steps are executed:
|
|
|
|
|
|
- `rec_boxes`: `(numpy.ndarray)` An array of rectangular bounding boxes for detection boxes, with a shape of (n, 4) and dtype int16. Each row represents the [x_min, y_min, x_max, y_max] coordinates of a rectangle, where (x_min, y_min) is the top-left corner and (x_max, y_max) is the bottom-right corner
|
|
|
|
|
|
+ - `text_word`: `(List[str])` When `return_word_box` is set to `True`, returns a list of the recognized text for each character.
|
|
|
+
|
|
|
+ - `text_word_boxes`: `(List[numpy.ndarray])` When `return_word_box` is set to `True`, returns a list of bounding box coordinates for each recognized character.
|
|
|
+
|
|
|
- Calling the `save_to_json()` method will save the above content to the specified `save_path`. If a directory is specified, the saved path will be `save_path/{your_img_basename}_res.json`. If a file is specified, it will be saved directly to that file. Since JSON files do not support saving numpy arrays, the `numpy.array` type will be converted to a list format.
|
|
|
|
|
|
- Calling the `save_to_img()` method will save the visualization results to the specified `save_path`. If a directory is specified, the saved path will be `save_path/{your_img_basename}_ocr_res_img.{your_img_extension}`. If a file is specified, it will be saved directly to that file. (Since the pipeline usually contains multiple result images, it is not recommended to specify a specific file path directly, as multiple images will be overwritten and only the last image will be retained)
|