|
|
@@ -1,68 +1,104 @@
|
|
|
# PaddleX模型库
|
|
|
|
|
|
## 图像分类模型
|
|
|
-> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。
|
|
|
|
|
|
+> 表中模型准确率均为在ImageNet数据集上测试所得,表中符号`-`表示相关指标暂未测试,预测速度测试环境如下所示:
|
|
|
|
|
|
-| 模型 | 模型大小 | 预测速度(毫秒) | Top1准确率(%) | Top5准确率(%) |
|
|
|
+* CPU的评估环境基于骁龙855(SD855)。
|
|
|
+* GPU评估环境基于T4机器,在FP32+TensorRT配置下运行500次测得(去除前10次的warmup时间)。
|
|
|
+
|
|
|
+### 移动端系列
|
|
|
+
|
|
|
+| 模型 | 模型大小 | SD855 time(ms) bs=1 | Top1准确率(%) | Top5准确率(%) |
|
|
|
+| :----| :------- | :----------- | :--------- | :--------- |
|
|
|
+| [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 17.4MB | 32.523048 | 71.0 | 89.7 |
|
|
|
+| [MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 15.0MB | 23.317699 | 72.2 | 90.7 |
|
|
|
+| [MobileNetV3_large](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)| 22.8MB | 19.30835 | 75.3 | 93.2 |
|
|
|
+| [MobileNetV3_small](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar) | 12.5MB | 9.2745 | 68.2 | 88.1 |
|
|
|
+| [MobileNetV3_large_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)| 22.8MB | 19.30835 | 79.0 | 94.5 |
|
|
|
+| [MobileNetV3_small_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar) | 12.5MB | 6.5463 | 71.3 | 90.1 |
|
|
|
+| [ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 10.2MB | 10.941 | 68.8 | 88.5 |
|
|
|
+
|
|
|
+### 其他系列
|
|
|
+
|
|
|
+| 模型 | 模型大小 | GPU time(ms) bs=1| Top1准确率(%) | Top5准确率(%) |
|
|
|
| :----| :------- | :----------- | :--------- | :--------- |
|
|
|
-| [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)| 46.2MB | 3.72882 | 71.0 | 89.9 |
|
|
|
-| [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)| 87.9MB | 5.50876 | 74.6 | 92.1 |
|
|
|
-| [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)| 103.4MB | 7.76659 | 76.5 | 93.0 |
|
|
|
-| [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |180.4MB | 13.80876 | 77.6 | 93.6 |
|
|
|
-| [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |103.5MB | 8.20476 | 79.1 | 94.4 |
|
|
|
-| [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)| 180.5MB | 14.24643 | 80.2 | 95.0 |
|
|
|
-| [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar) |103.5MB | 7.79264 | 82.4 | 96.1 |
|
|
|
-| [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)| 180.5MB | 13.34580 | 83.7 | 96.7 |
|
|
|
-| [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar)|167.4MB | 8.82047 | 78.0 | 94.1 |
|
|
|
-| [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 17.4MB | 3.42838 | 71.0 | 89.7 |
|
|
|
-| [MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 15.0MB | 5.92667 | 72.2 | 90.7 |
|
|
|
-| [MobileNetV3_large](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)| 22.8MB | 8.31428 | 75.3 | 93.2 |
|
|
|
-| [MobileNetV3_small](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar) | 12.5MB | 7.30689 | 68.2 | 88.1 |
|
|
|
-| [MobileNetV3_large_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)| 22.8MB | 8.06651 | 79.0 | 94.5 |
|
|
|
-| [MobileNetV3_small_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar) | 12.5MB | 7.08837 | 71.3 | 90.1 |
|
|
|
-| [Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) | 109.2MB | 8.15611 | 79.6 | 94.4 |
|
|
|
-| [Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) | 161.6MB | 13.87017 | 80.3 | 94.5 |
|
|
|
-| [DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 33.1MB | 17.09874 | 75.7 | 92.6 |
|
|
|
-| [DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar)| 118.0MB | 22.79690 | 78.6 | 94.1 |
|
|
|
-| [DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar)| 84.1MB | 25.26089 | 77.6 | 93.7 |
|
|
|
-| [ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 10.2MB | 15.40138 | 68.8 | 88.5 |
|
|
|
-| [HRNet_W18](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) | 21.29MB |45.25514 | 76.9 | 93.4 |
|
|
|
+| [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)| 46.2MB | 1.45606 | 71.0 | 89.9 |
|
|
|
+| [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)| 87.9MB | 2.34957 | 74.6 | 92.1 |
|
|
|
+| [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)| 103.4MB | 3.47712 | 76.5 | 93.0 |
|
|
|
+| [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |180.4MB | 6.07125 | 77.6 | 93.6 |
|
|
|
+| [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |103.5MB | 3.53131 | 79.1 | 94.4 |
|
|
|
+| [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)| 180.5MB | 6.11704 | 80.2 | 95.0 |
|
|
|
+| [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar) |103.5MB | 3.53131 | 82.4 | 96.1 |
|
|
|
+| [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)| 180.5MB | 6.11704 | 83.7 | 96.7 |
|
|
|
+| [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar)|167.4MB | - | 78.0 | 94.1 |
|
|
|
+| [Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) | 109.2MB | 4.96939 | 79.6 | 94.4 |
|
|
|
+| [Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) | 161.6MB | 7.26158 | 80.3 | 94.5 |
|
|
|
+| [DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 33.1MB | 4.40447 | 75.7 | 92.6 |
|
|
|
+| [DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar)| 118.0MB | 10.39152 | 78.6 | 94.1 |
|
|
|
+| [DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar)| 84.1MB | 8.20652 | 77.6 | 93.7 |
|
|
|
+| [HRNet_W18](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) | 21.29MB | 7.40636 | 76.9 | 93.4 |
|
|
|
| [AlexNet](https://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 244.4MB | - | 56.7 | 79.2 |
|
|
|
|
|
|
## 目标检测模型
|
|
|
|
|
|
-> 表中模型相关指标均为在MSCOCO数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla V100测试得到),表中符号`-`表示相关指标暂未测试。
|
|
|
-
|
|
|
-| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP(%) |
|
|
|
+> 表中模型精度BoxAP通过`evaluate()`接口测试MSCOCO验证集得到,符号`-`表示相关指标暂未测试,预测时间在以下环境测试所的:
|
|
|
+
|
|
|
+- 测试环境:
|
|
|
+ - CUDA 9.0
|
|
|
+ - CUDNN 7.5
|
|
|
+ - PaddlePaddle v1.6
|
|
|
+ - TensorRT-5.1.2.2
|
|
|
+ - GPU分别为: Tesla V100
|
|
|
+- 测试方式:
|
|
|
+ - 为了方便比较不同模型的推理速度,输入采用同样大小的图片,为 3x640x640。
|
|
|
+ - Batch Size=1
|
|
|
+ - 去掉前10轮warmup时间,测试100轮的平均时间,单位ms/image,包括输入数据拷贝至GPU的时间、计算时间、数据拷贝至CPU的时间。
|
|
|
+ - 采用Fluid C++预测引擎,开启FP32 TensorRT配置。
|
|
|
+ - 测试时开启了 FLAGS_cudnn_exhaustive_search=True,使用exhaustive方式搜索卷积计算算法。
|
|
|
+
|
|
|
+| 模型 | 模型大小 | 预测时间(ms/image) | BoxAP(%) |
|
|
|
|:-------|:-----------|:-------------|:----------|
|
|
|
-|[FasterRCNN-ResNet18-FPN](https://bj.bcebos.com/paddlex/pretrained_weights/faster_rcnn_r18_fpn_1x.tar) | 173.2M | - | 32.6 |
|
|
|
-|[FasterRCNN-ResNet50](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar)|136.0MB| 197.715 | 35.2 |
|
|
|
-|[FasterRCNN-ResNet50_vd](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar)| 136.1MB | 475.700 | 36.4 |
|
|
|
-|[FasterRCNN-ResNet101](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar)| 212.5MB | 582.911 | 38.3 |
|
|
|
-|[FasterRCNN-ResNet50-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar)| 167.7MB | 83.189 | 37.2 |
|
|
|
-|[FasterRCNN-ResNet50_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar)|167.8MB | 128.277 | 38.9 |
|
|
|
-|[FasterRCNN-ResNet101-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar)| 244.2MB | 119.788 | 38.7 |
|
|
|
-|[FasterRCNN-ResNet101_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |244.3MB | 156.097 | 40.5 |
|
|
|
-|[FasterRCNN-HRNet_W18-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_1x.tar) |115.5MB | 81.592 | 36 |
|
|
|
+|[FasterRCNN-ResNet18-FPN](https://bj.bcebos.com/paddlex/pretrained_weights/faster_rcnn_r18_fpn_1x.tar) | 173.2MB | - | 32.6 |
|
|
|
+|[FasterRCNN-ResNet50](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar)|136.0MB| 146.124 | 35.2 |
|
|
|
+|[FasterRCNN-ResNet50_vd](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar)| 136.1MB | 144.767 | 36.4 |
|
|
|
+|[FasterRCNN-ResNet101](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar)| 212.5MB | 150.985 | 38.3 |
|
|
|
+|[FasterRCNN-ResNet50-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar)| 167.7MB | 24.758 | 37.2 |
|
|
|
+|[FasterRCNN-ResNet50_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar)|167.8MB | 25.292 | 38.9 |
|
|
|
+|[FasterRCNN-ResNet101-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar)| 244.2MB | 30.331 | 38.7 |
|
|
|
+|[FasterRCNN-ResNet101_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |244.3MB | 29.969 | 40.5 |
|
|
|
+|[FasterRCNN-HRNet_W18-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_1x.tar) |115.5MB | - | 36 |
|
|
|
|[PPYOLO](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | 329.1MB | - |45.9 |
|
|
|
-|[YOLOv3-DarkNet53](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar)|249.2MB | 42.672 | 38.9 |
|
|
|
-|[YOLOv3-MobileNetV1](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |99.2MB | 15.442 | 29.3 |
|
|
|
-|[YOLOv3-MobileNetV3_large](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams)|100.7MB | 143.322 | 31.6 |
|
|
|
-| [YOLOv3-ResNet34](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar)|170.3MB | 23.185 | 36.2 |
|
|
|
+|[YOLOv3-DarkNet53](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar)|249.2MB | 20.252 | 38.9 |
|
|
|
+|[YOLOv3-MobileNetV1](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |99.2MB | 11.834 | 29.3 |
|
|
|
+|[YOLOv3-MobileNetV3_large](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams)|100.7MB | - | 31.6 |
|
|
|
+| [YOLOv3-ResNet34](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar)|170.3MB | 14.125 | 36.2 |
|
|
|
|
|
|
## 实例分割模型
|
|
|
|
|
|
-> 预测时间是在一张Nvidia Tesla V100的GPU上通过'evaluate()'接口测试MSCOCO验证集得到,包括数据加载、网络前向执行和后处理, batch size是1,表中符号`-`表示相关指标暂未测试。
|
|
|
+> 表中模型精度BoxAP/MaskAP通过`evaluate()`接口测试MSCOCO验证集得到,符号`-`表示相关指标暂未测试,预测时间在以下环境测试所的
|
|
|
+
|
|
|
+- 测试环境:
|
|
|
+ - CUDA 9.0
|
|
|
+ - CUDNN 7.5
|
|
|
+ - PaddlePaddle v1.6
|
|
|
+ - TensorRT-5.1.2.2
|
|
|
+ - GPU分别为: Tesla V100
|
|
|
+- 测试方式:
|
|
|
+ - 为了方便比较不同模型的推理速度,输入采用同样大小的图片,为 3x640x640。
|
|
|
+ - Batch Size=1
|
|
|
+ - 去掉前10轮warmup时间,测试100轮的平均时间,单位ms/image,包括输入数据拷贝至GPU的时间、计算时间、数据拷贝至CPU的时间。
|
|
|
+ - 采用Fluid C++预测引擎,开启FP32 TensorRT配置。
|
|
|
+ - 测试时开启了 FLAGS_cudnn_exhaustive_search=True,使用exhaustive方式搜索卷积计算算法。
|
|
|
|
|
|
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP (%) | MaskAP (%) |
|
|
|
|:-------|:-----------|:-------------|:----------|:----------|
|
|
|
|[MaskRCNN-ResNet18-FPN](https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_r18_fpn_1x.tar) | 189.1MB | - | 33.6 | 30.5 |
|
|
|
-|[MaskRCNN-ResNet50](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) | 143.9MB | 87 | 38.2 | 33.4 |
|
|
|
-|[MaskRCNN-ResNet50-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar)| 177.7MB | 63.9 | 38.7 | 34.7 |
|
|
|
-|[MaskRCNN-ResNet50_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) | 177.7MB | 63.1 | 39.8 | 35.4 |
|
|
|
-|[MaskRCNN-ResNet101-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) | 253.6MB | 77 | 39.5 | 35.2 |
|
|
|
-|[MaskRCNN-ResNet101_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) | 253.7MB | 76.4 | 41.4 | 36.8 |
|
|
|
+|[MaskRCNN-ResNet50](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) | 143.9MB | 159.527 | 38.2 | 33.4 |
|
|
|
+|[MaskRCNN-ResNet50-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar)| 177.7MB | 83.567 | 38.7 | 34.7 |
|
|
|
+|[MaskRCNN-ResNet50_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) | 177.7MB | 97.929 | 39.8 | 35.4 |
|
|
|
+|[MaskRCNN-ResNet101-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) | 253.6MB | 97.929 | 39.5 | 35.2 |
|
|
|
+|[MaskRCNN-ResNet101_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) | 253.7MB | 97.647 | 41.4 | 36.8 |
|
|
|
|[MaskRCNN-HRNet_W18-FPN](https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_hrnetv2p_w18_2x.tar) | 120.7MB | - | 38.7 | 34.7 |
|
|
|
|
|
|
|
|
|
@@ -84,5 +120,5 @@
|
|
|
| [DeepLabv3_MobileNetV3_large_x1_0_ssld](https://paddleseg.bj.bcebos.com/models/deeplabv3p_mobilenetv3_large_cityscapes.tar.gz) | 9.3MB | - | 73.28 |
|
|
|
| [DeepLabv3_MobileNetv2_x1.0](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) | 14.7MB | - | 69.8 |
|
|
|
| [DeepLabv3_Xception65](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 329.3MB | - | 79.3 |
|
|
|
-| [HRNet_W18](https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz) | 77.3MB | | 79.36 |
|
|
|
-| [Fast-SCNN](https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar) | 9.8MB | | 69.64 |
|
|
|
+| [HRNet_W18](https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz) | 77.3MB | - | 79.36 |
|
|
|
+| [Fast-SCNN](https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar) | 9.8MB | - | 69.64 |
|