|
|
@@ -186,7 +186,7 @@ The seal text recognition pipeline is used to recognize the text content of seal
|
|
|
</tr>
|
|
|
</tbody>
|
|
|
</table>
|
|
|
-
|
|
|
+</details>
|
|
|
|
|
|
<p><b>Document Image Orientation Classification Module (Optional):</b></p>
|
|
|
<table>
|
|
|
@@ -264,6 +264,7 @@ The seal text recognition pipeline is used to recognize the text content of seal
|
|
|
</table>
|
|
|
|
|
|
<p><b>Text Recognition Module:</b></p>
|
|
|
+
|
|
|
<table>
|
|
|
<tr>
|
|
|
<th>Model</th><th>Model Download Link</th>
|
|
|
@@ -271,31 +272,88 @@ The seal text recognition pipeline is used to recognize the text content of seal
|
|
|
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
<th>Model Storage Size (M)</th>
|
|
|
-<th>Description</th>
|
|
|
+<th>Introduction</th>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
+<td>81.53</td>
|
|
|
+<td>6.65 / 2.38</td>
|
|
|
+<td>32.92 / 32.92</td>
|
|
|
+<td>74.7 M</td>
|
|
|
+<td>PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data based on PP-OCRv4_server_rec. It has added the ability to recognize some traditional Chinese characters, Japanese, and special characters, and can support the recognition of more than 15,000 characters. In addition to improving the text recognition capability related to documents, it also enhances the general text recognition capability.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>PP-OCRv4_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>78.74</td>
|
|
|
+<td>4.82 / 1.20</td>
|
|
|
+<td>16.74 / 4.64</td>
|
|
|
+<td>10.6 M</td>
|
|
|
+<td>
|
|
|
+The lightweight recognition model of PP-OCRv4 has high inference efficiency and can be deployed on various hardware devices, including edge devices.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>PP-OCRv4_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>80.61 </td>
|
|
|
+<td>6.58 / 2.43</td>
|
|
|
+<td>33.17 / 33.17</td>
|
|
|
+<td>71.2 M</td>
|
|
|
+<td>The server-side model of PP-OCRv4 offers high inference accuracy and can be deployed on various types of servers.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>en_PP-OCRv4_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
+<td>70.39</td>
|
|
|
+<td>4.81 / 0.75</td>
|
|
|
+<td>16.10 / 5.31</td>
|
|
|
+<td>6.8 M</td>
|
|
|
+<td>The ultra-lightweight English recognition model, trained based on the PP-OCRv4 recognition model, supports the recognition of English letters and numbers.</td>
|
|
|
+</tr>
|
|
|
+</table>
|
|
|
+
|
|
|
+> ❗ The above list features the <b>4 core models</b> that the text recognition module primarily supports. In total, this module supports <b>18 models</b>. The complete list of models is as follows:
|
|
|
+
|
|
|
+<details><summary> 👉Model List Details</summary>
|
|
|
+
|
|
|
+* <b>Chinese Recognition Model</b>
|
|
|
+<table>
|
|
|
+<tr>
|
|
|
+<th>Model</th><th>Model Download Link</th>
|
|
|
+<th>Recognition Avg Accuracy(%)</th>
|
|
|
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
+<th>Model Storage Size (M)</th>
|
|
|
+<th>Introduction</th>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>PP-OCRv4_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Trained Model</a></td>
|
|
|
-<td>78.20</td>
|
|
|
-<td>4.82 / 4.82</td>
|
|
|
+<td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
+<td>81.53</td>
|
|
|
+<td>6.65 / 2.38</td>
|
|
|
+<td>32.92 / 32.92</td>
|
|
|
+<td>74.7 M</td>
|
|
|
+<td>PP-OCRv4_server_rec_doc is trained on a mixed dataset of more Chinese document data and PP-OCR training data based on PP-OCRv4_server_rec. It has added the recognition capabilities for some traditional Chinese characters, Japanese, and special characters. The number of recognizable characters is over 15,000. In addition to the improvement in document-related text recognition, it also enhances the general text recognition capability.</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>PP-OCRv4_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
+<td>78.74</td>
|
|
|
+<td>4.82 / 1.20</td>
|
|
|
<td>16.74 / 4.64</td>
|
|
|
<td>10.6 M</td>
|
|
|
-<td>The PP-OCRv4 recognition model is an upgrade from PP-OCRv3. Under comparable speed conditions, the effect in Chinese and English scenarios is further improved. The average recognition accuracy of the 80 multilingual models is increased by more than 8%.</td>
|
|
|
+<td>The lightweight recognition model of PP-OCRv4 has high inference efficiency and can be deployed on various hardware devices, including edge devices.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>PP-OCRv4_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Trained Model</a></td>
|
|
|
-<td>79.20</td>
|
|
|
-<td>6.58 / 6.58</td>
|
|
|
+<td>PP-OCRv4_server_rec </td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams">Trained Model</a></td>
|
|
|
+<td>80.61 </td>
|
|
|
+<td>6.58 / 2.43</td>
|
|
|
<td>33.17 / 33.17</td>
|
|
|
<td>71.2 M</td>
|
|
|
-<td>A high-precision server text recognition model, featuring high accuracy, fast speed, and multilingual support. It is suitable for text recognition tasks in various scenarios.</td>
|
|
|
+<td>The server-side model of PP-OCRv4 offers high inference accuracy and can be deployed on various types of servers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td>5.87 / 5.87</td>
|
|
|
+<td>72.96</td>
|
|
|
+<td>5.87 / 1.19</td>
|
|
|
<td>9.07 / 4.28</td>
|
|
|
-<td></td>
|
|
|
-<td>An ultra-lightweight OCR model suitable for mobile applications. It adopts an encoder-decoder structure based on Transformer and enhances recognition accuracy and efficiency through techniques such as data augmentation and mixed precision training. The model size is 10.6M, making it suitable for deployment on resource-constrained devices. It can be used in scenarios such as mobile photo translation and business card recognition.</td>
|
|
|
+<td>9.2 M</td>
|
|
|
+<td>PP-OCRv3’s lightweight recognition model is designed for high inference efficiency and can be deployed on a variety of hardware devices, including edge devices.</td>
|
|
|
</tr>
|
|
|
</table>
|
|
|
|
|
|
@@ -303,16 +361,16 @@ The seal text recognition pipeline is used to recognize the text content of seal
|
|
|
<tr>
|
|
|
<th>Model</th><th>Model Download Link</th>
|
|
|
<th>Recognition Avg Accuracy(%)</th>
|
|
|
-<th>GPU Inference Time (ms)</th>
|
|
|
-<th>CPU Inference Time</th>
|
|
|
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
<th>Model Storage Size (M)</th>
|
|
|
<th>Introduction</th>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>ch_SVTRv2_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/ch_SVTRv2_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ch_SVTRv2_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
<td>68.81</td>
|
|
|
-<td>8.36801</td>
|
|
|
-<td>165.706</td>
|
|
|
+<td>8.08 / 2.74</td>
|
|
|
+<td>50.17 / 42.50</td>
|
|
|
<td>73.9 M</td>
|
|
|
<td rowspan="1">
|
|
|
SVTRv2 is a server text recognition model developed by the OpenOCR team of Fudan University's Visual and Learning Laboratory (FVL). It won the first prize in the PaddleOCR Algorithm Model Challenge - Task One: OCR End-to-End Recognition Task. The end-to-end recognition accuracy on the A list is 6% higher than that of PP-OCRv4.
|
|
|
@@ -324,16 +382,16 @@ SVTRv2 is a server text recognition model developed by the OpenOCR team of Fudan
|
|
|
<tr>
|
|
|
<th>Model</th><th>Model Download Link</th>
|
|
|
<th>Recognition Avg Accuracy(%)</th>
|
|
|
-<th>GPU Inference Time (ms)</th>
|
|
|
-<th>CPU Inference Time</th>
|
|
|
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
<th>Model Storage Size (M)</th>
|
|
|
<th>Introduction</th>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>ch_RepSVTR_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/ch_RepSVTR_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ch_RepSVTR_rec_pretrained.pdparams">Training Model</a></td>
|
|
|
<td>65.07</td>
|
|
|
-<td>10.5047</td>
|
|
|
-<td>51.5647</td>
|
|
|
+<td>5.93 / 1.62</td>
|
|
|
+<td>20.73 / 7.32</td>
|
|
|
<td>22.1 M</td>
|
|
|
<td rowspan="1"> The RepSVTR text recognition model is a mobile text recognition model based on SVTRv2. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task One: OCR End-to-End Recognition Task. The end-to-end recognition accuracy on the B list is 2.5% higher than that of PP-OCRv4, with the same inference speed.</td>
|
|
|
</tr>
|
|
|
@@ -344,26 +402,26 @@ SVTRv2 is a server text recognition model developed by the OpenOCR team of Fudan
|
|
|
<tr>
|
|
|
<th>Model</th><th>Model Download Link</th>
|
|
|
<th>Recognition Avg Accuracy(%)</th>
|
|
|
-<th>GPU Inference Time (ms)</th>
|
|
|
-<th>CPU Inference Time</th>
|
|
|
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
<th>Model Storage Size (M)</th>
|
|
|
<th>Introduction</th>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>en_PP-OCRv4_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/en_PP-OCRv4_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>[Latest] Further upgraded based on PP-OCRv3, with improved accuracy under comparable speed conditions.</td>
|
|
|
+<td> 70.39</td>
|
|
|
+<td>4.81 / 0.75</td>
|
|
|
+<td>16.10 / 5.31</td>
|
|
|
+<td>6.8 M</td>
|
|
|
+<td>The ultra-lightweight English recognition model trained based on the PP-OCRv4 recognition model supports the recognition of English and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>en_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/en_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Ultra-lightweight model, supporting English and numeric recognition.</td>
|
|
|
+<td>70.69</td>
|
|
|
+<td>5.44 / 0.75</td>
|
|
|
+<td>8.65 / 5.57</td>
|
|
|
+<td>7.8 M </td>
|
|
|
+<td>The ultra-lightweight English recognition model trained based on the PP-OCRv3 recognition model supports the recognition of English and numbers.</td>
|
|
|
</tr>
|
|
|
</table>
|
|
|
|
|
|
@@ -372,92 +430,94 @@ SVTRv2 is a server text recognition model developed by the OpenOCR team of Fudan
|
|
|
<tr>
|
|
|
<th>Model</th><th>Model Download Link</th>
|
|
|
<th>Recognition Avg Accuracy(%)</th>
|
|
|
-<th>GPU Inference Time (ms)</th>
|
|
|
-<th>CPU Inference Time</th>
|
|
|
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
|
|
<th>Model Storage Size (M)</th>
|
|
|
<th>Introduction</th>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>korean_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/korean_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Korean Recognition</td>
|
|
|
+<td>60.21</td>
|
|
|
+<td>5.40 / 0.97</td>
|
|
|
+<td>9.11 / 4.05</td>
|
|
|
+<td>8.6 M</td>
|
|
|
+<td>The ultra-lightweight Korean recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Korean and numbers. </td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>japan_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/japan_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Japanese Recognition</td>
|
|
|
+<td>45.69</td>
|
|
|
+<td>5.70 / 1.02</td>
|
|
|
+<td>8.48 / 4.07</td>
|
|
|
+<td>8.8 M </td>
|
|
|
+<td>The ultra-lightweight Japanese recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Japanese and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>chinese_cht_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/chinese_cht_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Traditional Chinese Recognition</td>
|
|
|
+<td>82.06</td>
|
|
|
+<td>5.90 / 1.28</td>
|
|
|
+<td>9.28 / 4.34</td>
|
|
|
+<td>9.7 M </td>
|
|
|
+<td>The ultra-lightweight Traditional Chinese recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Traditional Chinese and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>te_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/te_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Telugu Recognition</td>
|
|
|
+<td>95.88</td>
|
|
|
+<td>5.42 / 0.82</td>
|
|
|
+<td>8.10 / 6.91</td>
|
|
|
+<td>7.8 M </td>
|
|
|
+<td>The ultra-lightweight Telugu recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Telugu and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>ka_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/ka_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Kannada Recognition</td>
|
|
|
+<td>96.96</td>
|
|
|
+<td>5.25 / 0.79</td>
|
|
|
+<td>9.09 / 3.86</td>
|
|
|
+<td>8.0 M </td>
|
|
|
+<td>The ultra-lightweight Kannada recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Kannada and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>ta_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/ta_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Tamil Recognition</td>
|
|
|
+<td>76.83</td>
|
|
|
+<td>5.23 / 0.75</td>
|
|
|
+<td>10.13 / 4.30</td>
|
|
|
+<td>8.0 M </td>
|
|
|
+<td>The ultra-lightweight Tamil recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Tamil and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>latin_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/latin_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Latin Recognition</td>
|
|
|
+<td>76.93</td>
|
|
|
+<td>5.20 / 0.79</td>
|
|
|
+<td>8.83 / 7.15</td>
|
|
|
+<td>7.8 M</td>
|
|
|
+<td>The ultra-lightweight Latin recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Latin script and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>arabic_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/arabic_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Arabic Script Recognition</td>
|
|
|
+<td>73.55</td>
|
|
|
+<td>5.35 / 0.79</td>
|
|
|
+<td>8.80 / 4.56</td>
|
|
|
+<td>7.8 M</td>
|
|
|
+<td>The ultra-lightweight Arabic script recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Arabic script and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>cyrillic_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/cyrillic_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Cyrillic Script Recognition</td>
|
|
|
+<td>94.28</td>
|
|
|
+<td>5.23 / 0.76</td>
|
|
|
+<td>8.89 / 3.88</td>
|
|
|
+<td>7.9 M </td>
|
|
|
+<td>
|
|
|
+The ultra-lightweight cyrillic alphabet recognition model trained based on the PP-OCRv3 recognition model supports the recognition of cyrillic letters and numbers.</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
<td>devanagari_PP-OCRv3_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/devanagari_PP-OCRv3_mobile_rec_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td></td>
|
|
|
-<td>Devanagari Script Recognition</td>
|
|
|
+<td>96.44</td>
|
|
|
+<td>5.22 / 0.79</td>
|
|
|
+<td>8.56 / 4.06</td>
|
|
|
+<td>7.9 M </td>
|
|
|
+<td>The ultra-lightweight Devanagari script recognition model trained based on the PP-OCRv3 recognition model supports the recognition of Devanagari script and numbers.</td>
|
|
|
</tr>
|
|
|
</table>
|
|
|
+</details>
|
|
|
|
|
|
**Test Environment Description**:
|
|
|
|
|
|
@@ -488,7 +548,7 @@ SVTRv2 is a server text recognition model developed by the OpenOCR team of Fudan
|
|
|
| Normal Mode | FP32 Precision / No TRT Acceleration | FP32 Precision / 8 Threads | PaddleInference |
|
|
|
| High-Performance Mode | Optimal combination of pre-selected precision types and acceleration strategies | FP32 Precision / 8 Threads | Pre-selected optimal backend (Paddle/OpenVINO/TRT, etc.) |
|
|
|
|
|
|
-</details>
|
|
|
+
|
|
|
|
|
|
## 2. Quick Start
|
|
|
All model pipelines provided by PaddleX can be quickly experienced. You can experience the effect of the seal text recognition pipeline on the community platform, or you can use the command line or Python locally to experience the effect of the seal text recognition pipeline.
|