Explorar o código

fix spelling error

FlyingQianMM %!s(int64=5) %!d(string=hai) anos
pai
achega
824ae68795
Modificáronse 2 ficheiros con 4 adicións e 4 borrados
  1. 2 2
      docs/examples/change_detection.md
  2. 2 2
      examples/change_detection/README.md

+ 2 - 2
docs/examples/change_detection.md

@@ -68,7 +68,7 @@ tar -xvf google_change_det_model.tar.gz
 
 在训练过程中,每隔10个迭代轮数会评估一次模型在验证集的精度。由于已事先将原始大尺寸图片切分成小块,相当于使用无重叠的滑动窗口预测方式,最优模型精度:
 
-| mean_iou | category__iou | overal_accuracy | category_accuracy | category_F1-score | kappa |
+| mean_iou | category__iou | overall_accuracy | category_accuracy | category_F1-score | kappa |
 | -- | -- | -- | -- | --| -- |
 | 84.24% | 97.54%、70.94%| 97.68% | 98.50%、85.99% | 98.75%、83% | 81.76% |
 
@@ -76,7 +76,7 @@ category分别对应`unchanged`和`changed`两类。
 
 运行以下脚本,将采用有重叠的滑动窗口预测方式,重新评估原始大尺寸图片的模型精度,此时模型精度为:
 
-| mean_iou | category__iou | overal_accuracy | category_accuracy | category_F1-score | kappa |
+| mean_iou | category__iou | overall_accuracy | category_accuracy | category_F1-score | kappa |
 | -- | -- | -- | -- | --| -- |
 | 85.33% | 97.79%、72.87% | 97.97% | 98.66%、87.06% | 98.99%、84.30% | 83.19% |
 

+ 2 - 2
examples/change_detection/README.md

@@ -75,7 +75,7 @@ tar -xvf google_change_det_model.tar.gz
 
 在训练过程中,每隔10个迭代轮数会评估一次模型在验证集的精度。由于已事先将原始大尺寸图片切分成小块,相当于使用无重叠的滑动窗口预测方式,最优模型精度:
 
-| mean_iou | category__iou | overal_accuracy | category_accuracy | category_F1-score | kappa |
+| mean_iou | category__iou | overall_accuracy | category_accuracy | category_F1-score | kappa |
 | -- | -- | -- | -- | --| -- |
 | 84.24% | 97.54%、70.94%| 97.68% | 98.50%、85.99% | 98.75%、83% | 81.76% |
 
@@ -83,7 +83,7 @@ category分别对应`unchanged`和`changed`两类。
 
 运行以下脚本,将采用有重叠的滑动窗口预测方式,重新评估原始大尺寸图片的模型精度,此时模型精度为:
 
-| mean_iou | category__iou | overal_accuracy | category_accuracy | category_F1-score | kappa |
+| mean_iou | category__iou | overall_accuracy | category_accuracy | category_F1-score | kappa |
 | -- | -- | -- | -- | --| -- |
 | 85.33% | 97.79%、72.87% | 97.97% | 98.66%、87.06% | 98.99%、84.30% | 83.19% |