|
@@ -0,0 +1,939 @@
|
|
|
|
|
+# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
+#
|
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
|
+#
|
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
+#
|
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
|
+# limitations under the License.
|
|
|
|
|
+
|
|
|
|
|
+import os, sys
|
|
|
|
|
+import numpy as np
|
|
|
|
|
+from numpy import cos, sin, arctan, sqrt
|
|
|
|
|
+import cv2
|
|
|
|
|
+import copy
|
|
|
|
|
+import time
|
|
|
|
|
+
|
|
|
|
|
+from .....utils import logging
|
|
|
|
|
+
|
|
|
|
|
+def Homography(
|
|
|
|
|
+ image,
|
|
|
|
|
+ img_points,
|
|
|
|
|
+ world_width,
|
|
|
|
|
+ world_height,
|
|
|
|
|
+ interpolation=cv2.INTER_CUBIC,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+):
|
|
|
|
|
+ _points = np.array(img_points).reshape(-1, 2).astype(np.float32)
|
|
|
|
|
+
|
|
|
|
|
+ expand_x = int(0.5 * world_width * (ratio_width - 1))
|
|
|
|
|
+ expand_y = int(0.5 * world_height * (ratio_height - 1))
|
|
|
|
|
+
|
|
|
|
|
+ pt_lefttop = [expand_x, expand_y]
|
|
|
|
|
+ pt_righttop = [expand_x + world_width, expand_y]
|
|
|
|
|
+ pt_leftbottom = [expand_x + world_width, expand_y + world_height]
|
|
|
|
|
+ pt_rightbottom = [expand_x, expand_y + world_height]
|
|
|
|
|
+
|
|
|
|
|
+ pts_std = np.float32([pt_lefttop, pt_righttop, pt_leftbottom, pt_rightbottom])
|
|
|
|
|
+
|
|
|
|
|
+ img_crop_width = int(world_width * ratio_width)
|
|
|
|
|
+ img_crop_height = int(world_height * ratio_height)
|
|
|
|
|
+
|
|
|
|
|
+ M = cv2.getPerspectiveTransform(_points, pts_std)
|
|
|
|
|
+
|
|
|
|
|
+ dst_img = cv2.warpPerspective(
|
|
|
|
|
+ image,
|
|
|
|
|
+ M,
|
|
|
|
|
+ (img_crop_width, img_crop_height),
|
|
|
|
|
+ borderMode=cv2.BORDER_CONSTANT, # BORDER_CONSTANT BORDER_REPLICATE
|
|
|
|
|
+ flags=interpolation,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return dst_img
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class PlanB:
|
|
|
|
|
+ def __call__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ image,
|
|
|
|
|
+ points,
|
|
|
|
|
+ curveTextRectifier,
|
|
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ loss_thresh=5.0,
|
|
|
|
|
+ square=False,
|
|
|
|
|
+ ):
|
|
|
|
|
+ """
|
|
|
|
|
+ Plan B using sub-image when it failed in original image
|
|
|
|
|
+ :param image:
|
|
|
|
|
+ :param points:
|
|
|
|
|
+ :param curveTextRectifier: CurveTextRectifier
|
|
|
|
|
+ :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
|
|
|
|
|
+ :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param loss_thresh: if loss greater than loss_thresh --> get_rotate_crop_image
|
|
|
|
|
+ :param square: crop square image or not. True or False. The default is False
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ h, w = image.shape[:2]
|
|
|
|
|
+ _points = np.array(points).reshape(-1, 2).astype(np.float32)
|
|
|
|
|
+ x_min = int(np.min(_points[:, 0]))
|
|
|
|
|
+ y_min = int(np.min(_points[:, 1]))
|
|
|
|
|
+ x_max = int(np.max(_points[:, 0]))
|
|
|
|
|
+ y_max = int(np.max(_points[:, 1]))
|
|
|
|
|
+ dx = x_max - x_min
|
|
|
|
|
+ dy = y_max - y_min
|
|
|
|
|
+ max_d = max(dx, dy)
|
|
|
|
|
+ mean_pt = np.mean(_points, 0)
|
|
|
|
|
+
|
|
|
|
|
+ expand_x = (ratio_width - 1.0) * 0.5 * max_d
|
|
|
|
|
+ expand_y = (ratio_height - 1.0) * 0.5 * max_d
|
|
|
|
|
+
|
|
|
|
|
+ if square:
|
|
|
|
|
+ x_min = np.clip(int(mean_pt[0] - max_d - expand_x), 0, w - 1)
|
|
|
|
|
+ y_min = np.clip(int(mean_pt[1] - max_d - expand_y), 0, h - 1)
|
|
|
|
|
+ x_max = np.clip(int(mean_pt[0] + max_d + expand_x), 0, w - 1)
|
|
|
|
|
+ y_max = np.clip(int(mean_pt[1] + max_d + expand_y), 0, h - 1)
|
|
|
|
|
+ else:
|
|
|
|
|
+ x_min = np.clip(int(x_min - expand_x), 0, w - 1)
|
|
|
|
|
+ y_min = np.clip(int(y_min - expand_y), 0, h - 1)
|
|
|
|
|
+ x_max = np.clip(int(x_max + expand_x), 0, w - 1)
|
|
|
|
|
+ y_max = np.clip(int(y_max + expand_y), 0, h - 1)
|
|
|
|
|
+
|
|
|
|
|
+ new_image = image[y_min:y_max, x_min:x_max, :].copy()
|
|
|
|
|
+ new_points = _points.copy()
|
|
|
|
|
+ new_points[:, 0] -= x_min
|
|
|
|
|
+ new_points[:, 1] -= y_min
|
|
|
|
|
+
|
|
|
|
|
+ dst_img, loss = curveTextRectifier(
|
|
|
|
|
+ new_image,
|
|
|
|
|
+ new_points,
|
|
|
|
|
+ interpolation,
|
|
|
|
|
+ ratio_width,
|
|
|
|
|
+ ratio_height,
|
|
|
|
|
+ mode="calibration",
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return dst_img, loss
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class CurveTextRectifier:
|
|
|
|
|
+ """
|
|
|
|
|
+ spatial transformer via monocular vision
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self):
|
|
|
|
|
+ self.get_virtual_camera_parameter()
|
|
|
|
|
+
|
|
|
|
|
+ def get_virtual_camera_parameter(self):
|
|
|
|
|
+ vcam_thz = 0
|
|
|
|
|
+ vcam_thx1 = 180
|
|
|
|
|
+ vcam_thy = 180
|
|
|
|
|
+ vcam_thx2 = 0
|
|
|
|
|
+
|
|
|
|
|
+ vcam_x = 0
|
|
|
|
|
+ vcam_y = 0
|
|
|
|
|
+ vcam_z = 100
|
|
|
|
|
+
|
|
|
|
|
+ radian = np.pi / 180
|
|
|
|
|
+
|
|
|
|
|
+ angle_z = radian * vcam_thz
|
|
|
|
|
+ angle_x1 = radian * vcam_thx1
|
|
|
|
|
+ angle_y = radian * vcam_thy
|
|
|
|
|
+ angle_x2 = radian * vcam_thx2
|
|
|
|
|
+
|
|
|
|
|
+ optic_x = vcam_x
|
|
|
|
|
+ optic_y = vcam_y
|
|
|
|
|
+ optic_z = vcam_z
|
|
|
|
|
+
|
|
|
|
|
+ fu = 100
|
|
|
|
|
+ fv = 100
|
|
|
|
|
+
|
|
|
|
|
+ matT = np.zeros((4, 4))
|
|
|
|
|
+ matT[0, 0] = cos(angle_z) * cos(angle_y) - sin(angle_z) * sin(angle_x1) * sin(
|
|
|
|
|
+ angle_y
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[0, 1] = cos(angle_z) * sin(angle_y) * sin(angle_x2) - sin(angle_z) * (
|
|
|
|
|
+ cos(angle_x1) * cos(angle_x2) - sin(angle_x1) * cos(angle_y) * sin(angle_x2)
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[0, 2] = cos(angle_z) * sin(angle_y) * cos(angle_x2) + sin(angle_z) * (
|
|
|
|
|
+ cos(angle_x1) * sin(angle_x2) + sin(angle_x1) * cos(angle_y) * cos(angle_x2)
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[0, 3] = optic_x
|
|
|
|
|
+ matT[1, 0] = sin(angle_z) * cos(angle_y) + cos(angle_z) * sin(angle_x1) * sin(
|
|
|
|
|
+ angle_y
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[1, 1] = sin(angle_z) * sin(angle_y) * sin(angle_x2) + cos(angle_z) * (
|
|
|
|
|
+ cos(angle_x1) * cos(angle_x2) - sin(angle_x1) * cos(angle_y) * sin(angle_x2)
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[1, 2] = sin(angle_z) * sin(angle_y) * cos(angle_x2) - cos(angle_z) * (
|
|
|
|
|
+ cos(angle_x1) * sin(angle_x2) + sin(angle_x1) * cos(angle_y) * cos(angle_x2)
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[1, 3] = optic_y
|
|
|
|
|
+ matT[2, 0] = -cos(angle_x1) * sin(angle_y)
|
|
|
|
|
+ matT[2, 1] = cos(angle_x1) * cos(angle_y) * sin(angle_x2) + sin(angle_x1) * cos(
|
|
|
|
|
+ angle_x2
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[2, 2] = cos(angle_x1) * cos(angle_y) * cos(angle_x2) - sin(angle_x1) * sin(
|
|
|
|
|
+ angle_x2
|
|
|
|
|
+ )
|
|
|
|
|
+ matT[2, 3] = optic_z
|
|
|
|
|
+ matT[3, 0] = 0
|
|
|
|
|
+ matT[3, 1] = 0
|
|
|
|
|
+ matT[3, 2] = 0
|
|
|
|
|
+ matT[3, 3] = 1
|
|
|
|
|
+
|
|
|
|
|
+ matS = np.zeros((4, 4))
|
|
|
|
|
+ matS[2, 3] = 0.5
|
|
|
|
|
+ matS[3, 2] = 0.5
|
|
|
|
|
+
|
|
|
|
|
+ self.ifu = 1 / fu
|
|
|
|
|
+ self.ifv = 1 / fv
|
|
|
|
|
+
|
|
|
|
|
+ self.matT = matT
|
|
|
|
|
+ self.matS = matS
|
|
|
|
|
+ self.K = np.dot(matT.T, matS)
|
|
|
|
|
+ self.K = np.dot(self.K, matT)
|
|
|
|
|
+
|
|
|
|
|
+ def vertical_text_process(self, points, org_size):
|
|
|
|
|
+ """
|
|
|
|
|
+ change sequence amd process
|
|
|
|
|
+ :param points:
|
|
|
|
|
+ :param org_size:
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ org_w, org_h = org_size
|
|
|
|
|
+ _points = np.array(points).reshape(-1).tolist()
|
|
|
|
|
+ _points = np.array(_points[2:] + _points[:2]).reshape(-1, 2)
|
|
|
|
|
+
|
|
|
|
|
+ # convert to horizontal points
|
|
|
|
|
+ adjusted_points = np.zeros(_points.shape, dtype=np.float32)
|
|
|
|
|
+ adjusted_points[:, 0] = _points[:, 1]
|
|
|
|
|
+ adjusted_points[:, 1] = org_h - _points[:, 0] - 1
|
|
|
|
|
+
|
|
|
|
|
+ _image_coord, _world_coord, _new_image_size = self.horizontal_text_process(
|
|
|
|
|
+ adjusted_points
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # # convert to vertical points back
|
|
|
|
|
+ image_coord = _points.reshape(1, -1, 2)
|
|
|
|
|
+ world_coord = np.zeros(_world_coord.shape, dtype=np.float32)
|
|
|
|
|
+ world_coord[:, :, 0] = 0 - _world_coord[:, :, 1]
|
|
|
|
|
+ world_coord[:, :, 1] = _world_coord[:, :, 0]
|
|
|
|
|
+ world_coord[:, :, 2] = _world_coord[:, :, 2]
|
|
|
|
|
+ new_image_size = (_new_image_size[1], _new_image_size[0])
|
|
|
|
|
+
|
|
|
|
|
+ return image_coord, world_coord, new_image_size
|
|
|
|
|
+
|
|
|
|
|
+ def horizontal_text_process(self, points):
|
|
|
|
|
+ """
|
|
|
|
|
+ get image coordinate and world coordinate
|
|
|
|
|
+ :param points:
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ poly = np.array(points).reshape(-1)
|
|
|
|
|
+
|
|
|
|
|
+ dx_list = []
|
|
|
|
|
+ dy_list = []
|
|
|
|
|
+ for i in range(1, len(poly) // 2):
|
|
|
|
|
+ xdx = poly[i * 2] - poly[(i - 1) * 2]
|
|
|
|
|
+ xdy = poly[i * 2 + 1] - poly[(i - 1) * 2 + 1]
|
|
|
|
|
+ d = sqrt(xdx**2 + xdy**2)
|
|
|
|
|
+ dx_list.append(d)
|
|
|
|
|
+
|
|
|
|
|
+ for i in range(0, len(poly) // 4):
|
|
|
|
|
+ ydx = poly[i * 2] - poly[len(poly) - 1 - (i * 2 + 1)]
|
|
|
|
|
+ ydy = poly[i * 2 + 1] - poly[len(poly) - 1 - (i * 2)]
|
|
|
|
|
+ d = sqrt(ydx**2 + ydy**2)
|
|
|
|
|
+ dy_list.append(d)
|
|
|
|
|
+
|
|
|
|
|
+ dx_list = [
|
|
|
|
|
+ (dx_list[i] + dx_list[len(dx_list) - 1 - i]) / 2
|
|
|
|
|
+ for i in range(len(dx_list) // 2)
|
|
|
|
|
+ ]
|
|
|
|
|
+
|
|
|
|
|
+ height = np.around(np.mean(dy_list))
|
|
|
|
|
+
|
|
|
|
|
+ rect_coord = [0, 0]
|
|
|
|
|
+ for i in range(0, len(poly) // 4 - 1):
|
|
|
|
|
+ x = rect_coord[-2]
|
|
|
|
|
+ x += dx_list[i]
|
|
|
|
|
+ y = 0
|
|
|
|
|
+ rect_coord.append(x)
|
|
|
|
|
+ rect_coord.append(y)
|
|
|
|
|
+
|
|
|
|
|
+ rect_coord_half = copy.deepcopy(rect_coord)
|
|
|
|
|
+ for i in range(0, len(poly) // 4):
|
|
|
|
|
+ x = rect_coord_half[len(rect_coord_half) - 2 * i - 2]
|
|
|
|
|
+ y = height
|
|
|
|
|
+ rect_coord.append(x)
|
|
|
|
|
+ rect_coord.append(y)
|
|
|
|
|
+
|
|
|
|
|
+ np_rect_coord = np.array(rect_coord).reshape(-1, 2)
|
|
|
|
|
+ x_min = np.min(np_rect_coord[:, 0])
|
|
|
|
|
+ y_min = np.min(np_rect_coord[:, 1])
|
|
|
|
|
+ x_max = np.max(np_rect_coord[:, 0])
|
|
|
|
|
+ y_max = np.max(np_rect_coord[:, 1])
|
|
|
|
|
+ new_image_size = (int(x_max - x_min + 0.5), int(y_max - y_min + 0.5))
|
|
|
|
|
+ x_mean = (x_max - x_min) / 2
|
|
|
|
|
+ y_mean = (y_max - y_min) / 2
|
|
|
|
|
+ np_rect_coord[:, 0] -= x_mean
|
|
|
|
|
+ np_rect_coord[:, 1] -= y_mean
|
|
|
|
|
+ rect_coord = np_rect_coord.reshape(-1).tolist()
|
|
|
|
|
+
|
|
|
|
|
+ rect_coord = np.array(rect_coord).reshape(-1, 2)
|
|
|
|
|
+ world_coord = np.ones((len(rect_coord), 3)) * 0
|
|
|
|
|
+
|
|
|
|
|
+ world_coord[:, :2] = rect_coord
|
|
|
|
|
+
|
|
|
|
|
+ image_coord = np.array(poly).reshape(1, -1, 2)
|
|
|
|
|
+ world_coord = world_coord.reshape(1, -1, 3)
|
|
|
|
|
+
|
|
|
|
|
+ return image_coord, world_coord, new_image_size
|
|
|
|
|
+
|
|
|
|
|
+ def horizontal_text_estimate(self, points):
|
|
|
|
|
+ """
|
|
|
|
|
+ horizontal or vertical text
|
|
|
|
|
+ :param points:
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ pts = np.array(points).reshape(-1, 2)
|
|
|
|
|
+ x_min = int(np.min(pts[:, 0]))
|
|
|
|
|
+ y_min = int(np.min(pts[:, 1]))
|
|
|
|
|
+ x_max = int(np.max(pts[:, 0]))
|
|
|
|
|
+ y_max = int(np.max(pts[:, 1]))
|
|
|
|
|
+ x = x_max - x_min
|
|
|
|
|
+ y = y_max - y_min
|
|
|
|
|
+ is_horizontal_text = True
|
|
|
|
|
+ if y / x > 1.5: # vertical text condition
|
|
|
|
|
+ is_horizontal_text = False
|
|
|
|
|
+ return is_horizontal_text
|
|
|
|
|
+
|
|
|
|
|
+ def virtual_camera_to_world(self, size):
|
|
|
|
|
+ ifu, ifv = self.ifu, self.ifv
|
|
|
|
|
+ K, matT = self.K, self.matT
|
|
|
|
|
+
|
|
|
|
|
+ ppu = size[0] / 2 + 1e-6
|
|
|
|
|
+ ppv = size[1] / 2 + 1e-6
|
|
|
|
|
+
|
|
|
|
|
+ P = np.zeros((size[1], size[0], 3))
|
|
|
|
|
+
|
|
|
|
|
+ lu = np.array([i for i in range(size[0])])
|
|
|
|
|
+ lv = np.array([i for i in range(size[1])])
|
|
|
|
|
+ u, v = np.meshgrid(lu, lv)
|
|
|
|
|
+
|
|
|
|
|
+ yp = (v - ppv) * ifv
|
|
|
|
|
+ xp = (u - ppu) * ifu
|
|
|
|
|
+ angle_a = arctan(sqrt(xp * xp + yp * yp))
|
|
|
|
|
+ angle_b = arctan(yp / xp)
|
|
|
|
|
+
|
|
|
|
|
+ D0 = sin(angle_a) * cos(angle_b)
|
|
|
|
|
+ D1 = sin(angle_a) * sin(angle_b)
|
|
|
|
|
+ D2 = cos(angle_a)
|
|
|
|
|
+
|
|
|
|
|
+ D0[xp <= 0] = -D0[xp <= 0]
|
|
|
|
|
+ D1[xp <= 0] = -D1[xp <= 0]
|
|
|
|
|
+
|
|
|
|
|
+ ratio_a = (
|
|
|
|
|
+ K[0, 0] * D0 * D0
|
|
|
|
|
+ + K[1, 1] * D1 * D1
|
|
|
|
|
+ + K[2, 2] * D2 * D2
|
|
|
|
|
+ + (K[0, 1] + K[1, 0]) * D0 * D1
|
|
|
|
|
+ + (K[0, 2] + K[2, 0]) * D0 * D2
|
|
|
|
|
+ + (K[1, 2] + K[2, 1]) * D1 * D2
|
|
|
|
|
+ )
|
|
|
|
|
+ ratio_b = (
|
|
|
|
|
+ (K[0, 3] + K[3, 0]) * D0
|
|
|
|
|
+ + (K[1, 3] + K[3, 1]) * D1
|
|
|
|
|
+ + (K[2, 3] + K[3, 2]) * D2
|
|
|
|
|
+ )
|
|
|
|
|
+ ratio_c = K[3, 3] * np.ones(ratio_b.shape)
|
|
|
|
|
+
|
|
|
|
|
+ delta = ratio_b * ratio_b - 4 * ratio_a * ratio_c
|
|
|
|
|
+ t = np.zeros(delta.shape)
|
|
|
|
|
+ t[ratio_a == 0] = -ratio_c[ratio_a == 0] / ratio_b[ratio_a == 0]
|
|
|
|
|
+ t[ratio_a != 0] = (-ratio_b[ratio_a != 0] + sqrt(delta[ratio_a != 0])) / (
|
|
|
|
|
+ 2 * ratio_a[ratio_a != 0]
|
|
|
|
|
+ )
|
|
|
|
|
+ t[delta < 0] = 0
|
|
|
|
|
+
|
|
|
|
|
+ P[:, :, 0] = matT[0, 3] + t * (
|
|
|
|
|
+ matT[0, 0] * D0 + matT[0, 1] * D1 + matT[0, 2] * D2
|
|
|
|
|
+ )
|
|
|
|
|
+ P[:, :, 1] = matT[1, 3] + t * (
|
|
|
|
|
+ matT[1, 0] * D0 + matT[1, 1] * D1 + matT[1, 2] * D2
|
|
|
|
|
+ )
|
|
|
|
|
+ P[:, :, 2] = matT[2, 3] + t * (
|
|
|
|
|
+ matT[2, 0] * D0 + matT[2, 1] * D1 + matT[2, 2] * D2
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return P
|
|
|
|
|
+
|
|
|
|
|
+ def world_to_image(self, image_size, world, intrinsic, distCoeffs, rotation, tvec):
|
|
|
|
|
+ r11 = rotation[0, 0]
|
|
|
|
|
+ r12 = rotation[0, 1]
|
|
|
|
|
+ r13 = rotation[0, 2]
|
|
|
|
|
+ r21 = rotation[1, 0]
|
|
|
|
|
+ r22 = rotation[1, 1]
|
|
|
|
|
+ r23 = rotation[1, 2]
|
|
|
|
|
+ r31 = rotation[2, 0]
|
|
|
|
|
+ r32 = rotation[2, 1]
|
|
|
|
|
+ r33 = rotation[2, 2]
|
|
|
|
|
+
|
|
|
|
|
+ t1 = tvec[0]
|
|
|
|
|
+ t2 = tvec[1]
|
|
|
|
|
+ t3 = tvec[2]
|
|
|
|
|
+
|
|
|
|
|
+ k1 = distCoeffs[0]
|
|
|
|
|
+ k2 = distCoeffs[1]
|
|
|
|
|
+ p1 = distCoeffs[2]
|
|
|
|
|
+ p2 = distCoeffs[3]
|
|
|
|
|
+ k3 = distCoeffs[4]
|
|
|
|
|
+ k4 = distCoeffs[5]
|
|
|
|
|
+ k5 = distCoeffs[6]
|
|
|
|
|
+ k6 = distCoeffs[7]
|
|
|
|
|
+
|
|
|
|
|
+ if len(distCoeffs) > 8:
|
|
|
|
|
+ s1 = distCoeffs[8]
|
|
|
|
|
+ s2 = distCoeffs[9]
|
|
|
|
|
+ s3 = distCoeffs[10]
|
|
|
|
|
+ s4 = distCoeffs[11]
|
|
|
|
|
+ else:
|
|
|
|
|
+ s1 = s2 = s3 = s4 = 0
|
|
|
|
|
+
|
|
|
|
|
+ if len(distCoeffs) > 12:
|
|
|
|
|
+ tx = distCoeffs[12]
|
|
|
|
|
+ ty = distCoeffs[13]
|
|
|
|
|
+ else:
|
|
|
|
|
+ tx = ty = 0
|
|
|
|
|
+
|
|
|
|
|
+ fu = intrinsic[0, 0]
|
|
|
|
|
+ fv = intrinsic[1, 1]
|
|
|
|
|
+ ppu = intrinsic[0, 2]
|
|
|
|
|
+ ppv = intrinsic[1, 2]
|
|
|
|
|
+
|
|
|
|
|
+ cos_tx = cos(tx)
|
|
|
|
|
+ cos_ty = cos(ty)
|
|
|
|
|
+ sin_tx = sin(tx)
|
|
|
|
|
+ sin_ty = sin(ty)
|
|
|
|
|
+
|
|
|
|
|
+ tao11 = cos_ty * cos_tx * cos_ty + sin_ty * cos_tx * sin_ty
|
|
|
|
|
+ tao12 = cos_ty * cos_tx * sin_ty * sin_tx - sin_ty * cos_tx * cos_ty * sin_tx
|
|
|
|
|
+ tao13 = -cos_ty * cos_tx * sin_ty * cos_tx + sin_ty * cos_tx * cos_ty * cos_tx
|
|
|
|
|
+ tao21 = -sin_tx * sin_ty
|
|
|
|
|
+ tao22 = cos_ty * cos_tx * cos_tx + sin_tx * cos_ty * sin_tx
|
|
|
|
|
+ tao23 = cos_ty * cos_tx * sin_tx - sin_tx * cos_ty * cos_tx
|
|
|
|
|
+
|
|
|
|
|
+ P = np.zeros((image_size[1], image_size[0], 2))
|
|
|
|
|
+
|
|
|
|
|
+ c3 = r31 * world[:, :, 0] + r32 * world[:, :, 1] + r33 * world[:, :, 2] + t3
|
|
|
|
|
+ c1 = r11 * world[:, :, 0] + r12 * world[:, :, 1] + r13 * world[:, :, 2] + t1
|
|
|
|
|
+ c2 = r21 * world[:, :, 0] + r22 * world[:, :, 1] + r23 * world[:, :, 2] + t2
|
|
|
|
|
+
|
|
|
|
|
+ x1 = c1 / c3
|
|
|
|
|
+ y1 = c2 / c3
|
|
|
|
|
+ x12 = x1 * x1
|
|
|
|
|
+ y12 = y1 * y1
|
|
|
|
|
+ x1y1 = 2 * x1 * y1
|
|
|
|
|
+ r2 = x12 + y12
|
|
|
|
|
+ r4 = r2 * r2
|
|
|
|
|
+ r6 = r2 * r4
|
|
|
|
|
+
|
|
|
|
|
+ radial_distortion = (1 + k1 * r2 + k2 * r4 + k3 * r6) / (
|
|
|
|
|
+ 1 + k4 * r2 + k5 * r4 + k6 * r6
|
|
|
|
|
+ )
|
|
|
|
|
+ x2 = (
|
|
|
|
|
+ x1 * radial_distortion + p1 * x1y1 + p2 * (r2 + 2 * x12) + s1 * r2 + s2 * r4
|
|
|
|
|
+ )
|
|
|
|
|
+ y2 = (
|
|
|
|
|
+ y1 * radial_distortion + p2 * x1y1 + p1 * (r2 + 2 * y12) + s3 * r2 + s4 * r4
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ x3 = tao11 * x2 + tao12 * y2 + tao13
|
|
|
|
|
+ y3 = tao21 * x2 + tao22 * y2 + tao23
|
|
|
|
|
+
|
|
|
|
|
+ P[:, :, 0] = fu * x3 + ppu
|
|
|
|
|
+ P[:, :, 1] = fv * y3 + ppv
|
|
|
|
|
+ P[c3 <= 0] = 0
|
|
|
|
|
+
|
|
|
|
|
+ return P
|
|
|
|
|
+
|
|
|
|
|
+ def spatial_transform(
|
|
|
|
|
+ self, image_data, new_image_size, mtx, dist, rvecs, tvecs, interpolation
|
|
|
|
|
+ ):
|
|
|
|
|
+ rotation, _ = cv2.Rodrigues(rvecs)
|
|
|
|
|
+ world_map = self.virtual_camera_to_world(new_image_size)
|
|
|
|
|
+ image_map = self.world_to_image(
|
|
|
|
|
+ new_image_size, world_map, mtx, dist, rotation, tvecs
|
|
|
|
|
+ )
|
|
|
|
|
+ image_map = image_map.astype(np.float32)
|
|
|
|
|
+ dst = cv2.remap(
|
|
|
|
|
+ image_data, image_map[:, :, 0], image_map[:, :, 1], interpolation
|
|
|
|
|
+ )
|
|
|
|
|
+ return dst
|
|
|
|
|
+
|
|
|
|
|
+ def calibrate(self, org_size, image_coord, world_coord):
|
|
|
|
|
+ """
|
|
|
|
|
+ calibration
|
|
|
|
|
+ :param org_size:
|
|
|
|
|
+ :param image_coord:
|
|
|
|
|
+ :param world_coord:
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ # flag = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_TILTED_MODEL | cv2.CALIB_THIN_PRISM_MODEL
|
|
|
|
|
+ flag = cv2.CALIB_RATIONAL_MODEL
|
|
|
|
|
+ flag2 = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_TILTED_MODEL
|
|
|
|
|
+ flag3 = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_THIN_PRISM_MODEL
|
|
|
|
|
+ flag4 = (
|
|
|
|
|
+ cv2.CALIB_RATIONAL_MODEL
|
|
|
|
|
+ | cv2.CALIB_ZERO_TANGENT_DIST
|
|
|
|
|
+ | cv2.CALIB_FIX_ASPECT_RATIO
|
|
|
|
|
+ )
|
|
|
|
|
+ flag5 = (
|
|
|
|
|
+ cv2.CALIB_RATIONAL_MODEL
|
|
|
|
|
+ | cv2.CALIB_TILTED_MODEL
|
|
|
|
|
+ | cv2.CALIB_ZERO_TANGENT_DIST
|
|
|
|
|
+ )
|
|
|
|
|
+ flag6 = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_FIX_ASPECT_RATIO
|
|
|
|
|
+ flag_list = [flag2, flag3, flag4, flag5, flag6]
|
|
|
|
|
+
|
|
|
|
|
+ ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
|
|
|
|
|
+ world_coord.astype(np.float32),
|
|
|
|
|
+ image_coord.astype(np.float32),
|
|
|
|
|
+ org_size,
|
|
|
|
|
+ None,
|
|
|
|
|
+ None,
|
|
|
|
|
+ flags=flag,
|
|
|
|
|
+ )
|
|
|
|
|
+ if ret > 2:
|
|
|
|
|
+ # strategies
|
|
|
|
|
+ min_ret = ret
|
|
|
|
|
+ for i, flag in enumerate(flag_list):
|
|
|
|
|
+ _ret, _mtx, _dist, _rvecs, _tvecs = cv2.calibrateCamera(
|
|
|
|
|
+ world_coord.astype(np.float32),
|
|
|
|
|
+ image_coord.astype(np.float32),
|
|
|
|
|
+ org_size,
|
|
|
|
|
+ None,
|
|
|
|
|
+ None,
|
|
|
|
|
+ flags=flag,
|
|
|
|
|
+ )
|
|
|
|
|
+ if _ret < min_ret:
|
|
|
|
|
+ min_ret = _ret
|
|
|
|
|
+ ret, mtx, dist, rvecs, tvecs = _ret, _mtx, _dist, _rvecs, _tvecs
|
|
|
|
|
+
|
|
|
|
|
+ return ret, mtx, dist, rvecs, tvecs
|
|
|
|
|
+
|
|
|
|
|
+ def dc_homo(
|
|
|
|
|
+ self,
|
|
|
|
|
+ img,
|
|
|
|
|
+ img_points,
|
|
|
|
|
+ obj_points,
|
|
|
|
|
+ is_horizontal_text,
|
|
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ ):
|
|
|
|
|
+ """
|
|
|
|
|
+ divide and conquer: homography
|
|
|
|
|
+ # ratio_width and ratio_height must be 1.0 here
|
|
|
|
|
+ """
|
|
|
|
|
+ _img_points = img_points.reshape(-1, 2)
|
|
|
|
|
+ _obj_points = obj_points.reshape(-1, 3)
|
|
|
|
|
+
|
|
|
|
|
+ homo_img_list = []
|
|
|
|
|
+ width_list = []
|
|
|
|
|
+ height_list = []
|
|
|
|
|
+ # divide and conquer
|
|
|
|
|
+ for i in range(len(_img_points) // 2 - 1):
|
|
|
|
|
+ new_img_points = np.zeros((4, 2)).astype(np.float32)
|
|
|
|
|
+ new_obj_points = np.zeros((4, 2)).astype(np.float32)
|
|
|
|
|
+
|
|
|
|
|
+ new_img_points[0:2, :] = _img_points[i : (i + 2), :2]
|
|
|
|
|
+ new_img_points[2:4, :] = _img_points[::-1, :][i : (i + 2), :2][::-1, :]
|
|
|
|
|
+
|
|
|
|
|
+ new_obj_points[0:2, :] = _obj_points[i : (i + 2), :2]
|
|
|
|
|
+ new_obj_points[2:4, :] = _obj_points[::-1, :][i : (i + 2), :2][::-1, :]
|
|
|
|
|
+
|
|
|
|
|
+ if is_horizontal_text:
|
|
|
|
|
+ world_width = np.abs(new_obj_points[1, 0] - new_obj_points[0, 0])
|
|
|
|
|
+ world_height = np.abs(new_obj_points[3, 1] - new_obj_points[0, 1])
|
|
|
|
|
+ else:
|
|
|
|
|
+ world_width = np.abs(new_obj_points[1, 1] - new_obj_points[0, 1])
|
|
|
|
|
+ world_height = np.abs(new_obj_points[3, 0] - new_obj_points[0, 0])
|
|
|
|
|
+
|
|
|
|
|
+ homo_img = Homography(
|
|
|
|
|
+ img,
|
|
|
|
|
+ new_img_points,
|
|
|
|
|
+ world_width,
|
|
|
|
|
+ world_height,
|
|
|
|
|
+ interpolation=interpolation,
|
|
|
|
|
+ ratio_width=ratio_width,
|
|
|
|
|
+ ratio_height=ratio_height,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ homo_img_list.append(homo_img)
|
|
|
|
|
+ _h, _w = homo_img.shape[:2]
|
|
|
|
|
+ width_list.append(_w)
|
|
|
|
|
+ height_list.append(_h)
|
|
|
|
|
+
|
|
|
|
|
+ # stitching
|
|
|
|
|
+ rectified_image = np.zeros((np.max(height_list), sum(width_list), 3)).astype(
|
|
|
|
|
+ np.uint8
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ st = 0
|
|
|
|
|
+ for homo_img, w, h in zip(homo_img_list, width_list, height_list):
|
|
|
|
|
+ rectified_image[:h, st : st + w, :] = homo_img
|
|
|
|
|
+ st += w
|
|
|
|
|
+
|
|
|
|
|
+ if not is_horizontal_text:
|
|
|
|
|
+ # vertical rotation
|
|
|
|
|
+ rectified_image = np.rot90(rectified_image, 3)
|
|
|
|
|
+
|
|
|
|
|
+ return rectified_image
|
|
|
|
|
+
|
|
|
|
|
+ def Homography(
|
|
|
|
|
+ self,
|
|
|
|
|
+ image,
|
|
|
|
|
+ img_points,
|
|
|
|
|
+ world_width,
|
|
|
|
|
+ world_height,
|
|
|
|
|
+ interpolation=cv2.INTER_CUBIC,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ ):
|
|
|
|
|
+ _points = np.array(img_points).reshape(-1, 2).astype(np.float32)
|
|
|
|
|
+
|
|
|
|
|
+ expand_x = int(0.5 * world_width * (ratio_width - 1))
|
|
|
|
|
+ expand_y = int(0.5 * world_height * (ratio_height - 1))
|
|
|
|
|
+
|
|
|
|
|
+ pt_lefttop = [expand_x, expand_y]
|
|
|
|
|
+ pt_righttop = [expand_x + world_width, expand_y]
|
|
|
|
|
+ pt_leftbottom = [expand_x + world_width, expand_y + world_height]
|
|
|
|
|
+ pt_rightbottom = [expand_x, expand_y + world_height]
|
|
|
|
|
+
|
|
|
|
|
+ pts_std = np.float32([pt_lefttop, pt_righttop, pt_leftbottom, pt_rightbottom])
|
|
|
|
|
+
|
|
|
|
|
+ img_crop_width = int(world_width * ratio_width)
|
|
|
|
|
+ img_crop_height = int(world_height * ratio_height)
|
|
|
|
|
+
|
|
|
|
|
+ M = cv2.getPerspectiveTransform(_points, pts_std)
|
|
|
|
|
+
|
|
|
|
|
+ dst_img = cv2.warpPerspective(
|
|
|
|
|
+ image,
|
|
|
|
|
+ M,
|
|
|
|
|
+ (img_crop_width, img_crop_height),
|
|
|
|
|
+ borderMode=cv2.BORDER_CONSTANT, # BORDER_CONSTANT BORDER_REPLICATE
|
|
|
|
|
+ flags=interpolation,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return dst_img
|
|
|
|
|
+
|
|
|
|
|
+ def __call__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ points,
|
|
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ mode="calibration",
|
|
|
|
|
+ ):
|
|
|
|
|
+ """
|
|
|
|
|
+ spatial transform for a poly text
|
|
|
|
|
+ :param image_data:
|
|
|
|
|
+ :param points: [x1,y1,x2,y2,x3,y3,...], clockwise order, (x1,y1) must be the top-left of first char.
|
|
|
|
|
+ :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
|
|
|
|
|
+ :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param mode: 'calibration' or 'homography'. when homography, ratio_width and ratio_height must be 1.0
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ org_h, org_w = image_data.shape[:2]
|
|
|
|
|
+ org_size = (org_w, org_h)
|
|
|
|
|
+ self.image = image_data
|
|
|
|
|
+
|
|
|
|
|
+ is_horizontal_text = self.horizontal_text_estimate(points)
|
|
|
|
|
+ if is_horizontal_text:
|
|
|
|
|
+ image_coord, world_coord, new_image_size = self.horizontal_text_process(
|
|
|
|
|
+ points
|
|
|
|
|
+ )
|
|
|
|
|
+ else:
|
|
|
|
|
+ image_coord, world_coord, new_image_size = self.vertical_text_process(
|
|
|
|
|
+ points, org_size
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ if mode.lower() == "calibration":
|
|
|
|
|
+ ret, mtx, dist, rvecs, tvecs = self.calibrate(
|
|
|
|
|
+ org_size, image_coord, world_coord
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ st_size = (
|
|
|
|
|
+ int(new_image_size[0] * ratio_width),
|
|
|
|
|
+ int(new_image_size[1] * ratio_height),
|
|
|
|
|
+ )
|
|
|
|
|
+ dst = self.spatial_transform(
|
|
|
|
|
+ image_data, st_size, mtx, dist[0], rvecs[0], tvecs[0], interpolation
|
|
|
|
|
+ )
|
|
|
|
|
+ elif mode.lower() == "homography":
|
|
|
|
|
+ # ratio_width and ratio_height must be 1.0 here and ret set to 0.01 without loss manually
|
|
|
|
|
+ ret = 0.01
|
|
|
|
|
+ dst = self.dc_homo(
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ image_coord,
|
|
|
|
|
+ world_coord,
|
|
|
|
|
+ is_horizontal_text,
|
|
|
|
|
+ interpolation=interpolation,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ )
|
|
|
|
|
+ else:
|
|
|
|
|
+ raise ValueError(
|
|
|
|
|
+ 'mode must be ["calibration", "homography"], but got {}'.format(mode)
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return dst, ret
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class AutoRectifier:
|
|
|
|
|
+ def __init__(self):
|
|
|
|
|
+ self.npoints = 10
|
|
|
|
|
+ self.curveTextRectifier = CurveTextRectifier()
|
|
|
|
|
+
|
|
|
|
|
+ @staticmethod
|
|
|
|
|
+ def get_rotate_crop_image(
|
|
|
|
|
+ img, points, interpolation=cv2.INTER_CUBIC, ratio_width=1.0, ratio_height=1.0
|
|
|
|
|
+ ):
|
|
|
|
|
+ """
|
|
|
|
|
+ crop or homography
|
|
|
|
|
+ :param img:
|
|
|
|
|
+ :param points:
|
|
|
|
|
+ :param interpolation:
|
|
|
|
|
+ :param ratio_width:
|
|
|
|
|
+ :param ratio_height:
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ h, w = img.shape[:2]
|
|
|
|
|
+ _points = np.array(points).reshape(-1, 2).astype(np.float32)
|
|
|
|
|
+
|
|
|
|
|
+ if len(_points) != 4:
|
|
|
|
|
+ x_min = int(np.min(_points[:, 0]))
|
|
|
|
|
+ y_min = int(np.min(_points[:, 1]))
|
|
|
|
|
+ x_max = int(np.max(_points[:, 0]))
|
|
|
|
|
+ y_max = int(np.max(_points[:, 1]))
|
|
|
|
|
+ dx = x_max - x_min
|
|
|
|
|
+ dy = y_max - y_min
|
|
|
|
|
+ expand_x = int(0.5 * dx * (ratio_width - 1))
|
|
|
|
|
+ expand_y = int(0.5 * dy * (ratio_height - 1))
|
|
|
|
|
+ x_min = np.clip(int(x_min - expand_x), 0, w - 1)
|
|
|
|
|
+ y_min = np.clip(int(y_min - expand_y), 0, h - 1)
|
|
|
|
|
+ x_max = np.clip(int(x_max + expand_x), 0, w - 1)
|
|
|
|
|
+ y_max = np.clip(int(y_max + expand_y), 0, h - 1)
|
|
|
|
|
+
|
|
|
|
|
+ dst_img = img[y_min:y_max, x_min:x_max, :].copy()
|
|
|
|
|
+ else:
|
|
|
|
|
+ img_crop_width = int(
|
|
|
|
|
+ max(
|
|
|
|
|
+ np.linalg.norm(_points[0] - _points[1]),
|
|
|
|
|
+ np.linalg.norm(_points[2] - _points[3]),
|
|
|
|
|
+ )
|
|
|
|
|
+ )
|
|
|
|
|
+ img_crop_height = int(
|
|
|
|
|
+ max(
|
|
|
|
|
+ np.linalg.norm(_points[0] - _points[3]),
|
|
|
|
|
+ np.linalg.norm(_points[1] - _points[2]),
|
|
|
|
|
+ )
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ dst_img = Homography(
|
|
|
|
|
+ img,
|
|
|
|
|
+ _points,
|
|
|
|
|
+ img_crop_width,
|
|
|
|
|
+ img_crop_height,
|
|
|
|
|
+ interpolation,
|
|
|
|
|
+ ratio_width,
|
|
|
|
|
+ ratio_height,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return dst_img
|
|
|
|
|
+
|
|
|
|
|
+ def visualize(self, image_data, points_list):
|
|
|
|
|
+ visualization = image_data.copy()
|
|
|
|
|
+
|
|
|
|
|
+ for box in points_list:
|
|
|
|
|
+ box = np.array(box).reshape(-1, 2).astype(np.int32)
|
|
|
|
|
+ cv2.drawContours(
|
|
|
|
|
+ visualization, [np.array(box).reshape((-1, 1, 2))], -1, (0, 0, 255), 2
|
|
|
|
|
+ )
|
|
|
|
|
+ for i, p in enumerate(box):
|
|
|
|
|
+ if i != 0:
|
|
|
|
|
+ cv2.circle(
|
|
|
|
|
+ visualization,
|
|
|
|
|
+ tuple(p),
|
|
|
|
|
+ radius=1,
|
|
|
|
|
+ color=(255, 0, 0),
|
|
|
|
|
+ thickness=2,
|
|
|
|
|
+ )
|
|
|
|
|
+ else:
|
|
|
|
|
+ cv2.circle(
|
|
|
|
|
+ visualization,
|
|
|
|
|
+ tuple(p),
|
|
|
|
|
+ radius=1,
|
|
|
|
|
+ color=(255, 255, 0),
|
|
|
|
|
+ thickness=2,
|
|
|
|
|
+ )
|
|
|
|
|
+ return visualization
|
|
|
|
|
+
|
|
|
|
|
+ def __call__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ points,
|
|
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ loss_thresh=5.0,
|
|
|
|
|
+ mode="calibration",
|
|
|
|
|
+ ):
|
|
|
|
|
+ """
|
|
|
|
|
+ rectification in strategies for a poly text
|
|
|
|
|
+ :param image_data:
|
|
|
|
|
+ :param points: [x1,y1,x2,y2,x3,y3,...], clockwise order, (x1,y1) must be the top-left of first char.
|
|
|
|
|
+ :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
|
|
|
|
|
+ :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param loss_thresh: if loss greater than loss_thresh --> get_rotate_crop_image
|
|
|
|
|
+ :param mode: 'calibration' or 'homography'. when homography, ratio_width and ratio_height must be 1.0
|
|
|
|
|
+ :return:
|
|
|
|
|
+ """
|
|
|
|
|
+ _points = np.array(points).reshape(-1, 2)
|
|
|
|
|
+ if len(_points) >= self.npoints and len(_points) % 2 == 0:
|
|
|
|
|
+ try:
|
|
|
|
|
+ curveTextRectifier = CurveTextRectifier()
|
|
|
|
|
+
|
|
|
|
|
+ dst_img, loss = curveTextRectifier(
|
|
|
|
|
+ image_data, points, interpolation, ratio_width, ratio_height, mode
|
|
|
|
|
+ )
|
|
|
|
|
+ if loss >= 2:
|
|
|
|
|
+ # for robust
|
|
|
|
|
+ # large loss means it cannot be reconstruct correctly, we must find other way to reconstruct
|
|
|
|
|
+ img_list, loss_list = [dst_img], [loss]
|
|
|
|
|
+ _dst_img, _loss = PlanB()(
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ points,
|
|
|
|
|
+ curveTextRectifier,
|
|
|
|
|
+ interpolation,
|
|
|
|
|
+ ratio_width,
|
|
|
|
|
+ ratio_height,
|
|
|
|
|
+ loss_thresh=loss_thresh,
|
|
|
|
|
+ square=True,
|
|
|
|
|
+ )
|
|
|
|
|
+ img_list += [_dst_img]
|
|
|
|
|
+ loss_list += [_loss]
|
|
|
|
|
+
|
|
|
|
|
+ _dst_img, _loss = PlanB()(
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ points,
|
|
|
|
|
+ curveTextRectifier,
|
|
|
|
|
+ interpolation,
|
|
|
|
|
+ ratio_width,
|
|
|
|
|
+ ratio_height,
|
|
|
|
|
+ loss_thresh=loss_thresh,
|
|
|
|
|
+ square=False,
|
|
|
|
|
+ )
|
|
|
|
|
+ img_list += [_dst_img]
|
|
|
|
|
+ loss_list += [_loss]
|
|
|
|
|
+
|
|
|
|
|
+ min_loss = min(loss_list)
|
|
|
|
|
+ dst_img = img_list[loss_list.index(min_loss)]
|
|
|
|
|
+
|
|
|
|
|
+ if min_loss >= loss_thresh:
|
|
|
|
|
+ logging.warning(
|
|
|
|
|
+ "calibration loss: {} is too large for spatial transformer. It is failed. Using get_rotate_crop_image".format(
|
|
|
|
|
+ loss
|
|
|
|
|
+ )
|
|
|
|
|
+ )
|
|
|
|
|
+ dst_img = self.get_rotate_crop_image(
|
|
|
|
|
+ image_data, points, interpolation, ratio_width, ratio_height
|
|
|
|
|
+ )
|
|
|
|
|
+ except Exception as e:
|
|
|
|
|
+ logging.warning(f"Exception caught: {e}")
|
|
|
|
|
+ dst_img = self.get_rotate_crop_image(
|
|
|
|
|
+ image_data, points, interpolation, ratio_width, ratio_height
|
|
|
|
|
+ )
|
|
|
|
|
+ else:
|
|
|
|
|
+ dst_img = self.get_rotate_crop_image(
|
|
|
|
|
+ image_data, _points, interpolation, ratio_width, ratio_height
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ return dst_img
|
|
|
|
|
+
|
|
|
|
|
+ def run(
|
|
|
|
|
+ self,
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ points_list,
|
|
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
|
|
+ ratio_width=1.0,
|
|
|
|
|
+ ratio_height=1.0,
|
|
|
|
|
+ loss_thresh=5.0,
|
|
|
|
|
+ mode="calibration",
|
|
|
|
|
+ ):
|
|
|
|
|
+ """
|
|
|
|
|
+ run for texts in an image
|
|
|
|
|
+ :param image_data: numpy.ndarray. The shape is [h, w, 3]
|
|
|
|
|
+ :param points_list: [[x1,y1,x2,y2,x3,y3,...], [x1,y1,x2,y2,x3,y3,...], ...], clockwise order, (x1,y1) must be the top-left of first char.
|
|
|
|
|
+ :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
|
|
|
|
|
+ :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
|
|
|
|
|
+ :param loss_thresh: if loss greater than loss_thresh --> get_rotate_crop_image
|
|
|
|
|
+ :param mode: 'calibration' or 'homography'. when homography, ratio_width and ratio_height must be 1.0
|
|
|
|
|
+ :return: res: roi-image list, visualized_image: draw polys in original image
|
|
|
|
|
+ """
|
|
|
|
|
+ if image_data is None:
|
|
|
|
|
+ raise ValueError
|
|
|
|
|
+ if not isinstance(points_list, list):
|
|
|
|
|
+ raise ValueError
|
|
|
|
|
+ for points in points_list:
|
|
|
|
|
+ if not isinstance(points, list):
|
|
|
|
|
+ raise ValueError
|
|
|
|
|
+
|
|
|
|
|
+ if ratio_width < 1.0 or ratio_height < 1.0:
|
|
|
|
|
+ raise ValueError(
|
|
|
|
|
+ "ratio_width and ratio_height cannot be smaller than 1, but got {}",
|
|
|
|
|
+ (ratio_width, ratio_height),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ if mode.lower() != "calibration" and mode.lower() != "homography":
|
|
|
|
|
+ raise ValueError(
|
|
|
|
|
+ 'mode must be ["calibration", "homography"], but got {}'.format(mode)
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ if mode.lower() == "homography" and ratio_width != 1.0 and ratio_height != 1.0:
|
|
|
|
|
+ raise ValueError(
|
|
|
|
|
+ "ratio_width and ratio_height must be 1.0 when mode is homography, but got mode:{}, ratio:({},{})".format(
|
|
|
|
|
+ mode, ratio_width, ratio_height
|
|
|
|
|
+ )
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ res = []
|
|
|
|
|
+ for points in points_list:
|
|
|
|
|
+ rectified_img = self(
|
|
|
|
|
+ image_data,
|
|
|
|
|
+ points,
|
|
|
|
|
+ interpolation,
|
|
|
|
|
+ ratio_width,
|
|
|
|
|
+ ratio_height,
|
|
|
|
|
+ loss_thresh=loss_thresh,
|
|
|
|
|
+ mode=mode,
|
|
|
|
|
+ )
|
|
|
|
|
+ res.append(rectified_img)
|
|
|
|
|
+
|
|
|
|
|
+ # visualize
|
|
|
|
|
+ visualized_image = self.visualize(image_data, points_list)
|
|
|
|
|
+
|
|
|
|
|
+ return res, visualized_image
|