Explorar el Código

Merge pull request #1070 from will-jl944/coco_err_analysis

add coco err analysis
FlyingQianMM hace 4 años
padre
commit
8436c8d9ba

BIN
docs/apis/images/detection_analysis.jpg


BIN
docs/apis/images/insect_bbox-allclass-allarea.png


BIN
docs/apis/images/insect_bbox_pr_curve(iou-0.5).png


+ 120 - 8
docs/apis/visualize.md

@@ -3,9 +3,11 @@
 ## 目录
 
 * [paddlex.det.visualize](#1)
-* [paddlex.seg.visualize](#2)
-* [paddlex.visualize_det](#3)
-* [paddlex.visualize_seg](#4)
+* [paddlex.det.draw_pr_curve](#2)
+* [paddlex.det.coco_error_analysis](#3)
+* [paddlex.seg.visualize](#4)
+* [paddlex.visualize_det](#5)
+* [paddlex.visualize_seg](#6)
 
 
 ## <h2 id="1">paddlex.det.visualize</h2>
@@ -27,17 +29,127 @@ paddlex.det.visualize(image, result, threshold=0.5, save_dir='./', color=None)
 
 
 使用示例:
-```
+```python
 import paddlex as pdx
 model = pdx.load_model('xiaoduxiong_epoch_12')
 result = model.predict('./xiaoduxiong_epoch_12/xiaoduxiong.jpeg')
 pdx.det.visualize('./xiaoduxiong_epoch_12/xiaoduxiong.jpeg', result, save_dir='./')
 # 预测结果保存在./visualize_xiaoduxiong.jpeg
+```
+
+
+## <h2 id="2">paddlex.det.draw_pr_curve</h2>
+> 目标检测/实例分割准确率-召回率可视化
+```python
+paddlex.det.draw_pr_curve(eval_details_file=None, gt=None, pred_bbox=None, pred_mask=None, iou_thresh=0.5, save_dir='./')
+```
+将目标检测/实例分割模型评估结果中各个类别的准确率和召回率的对应关系进行可视化,同时可视化召回率和置信度阈值的对应关系。
+> 注:PaddleX在训练过程中保存的模型目录中,均包含`eval_result.json`文件,可将此文件路径传给`eval_details_file`参数,设定`iou_threshold`即可得到对应模型在验证集上的PR曲线图。
+
+### 参数
+> * **eval_details_file** (str): 模型评估结果的保存路径,包含真值信息和预测结果。默认值为None。
+> * **gt** (list): 数据集的真值信息。默认值为None。
+> * **pred_bbox** (list): 模型在数据集上的预测框。默认值为None。
+> * **pred_mask** (list): 模型在数据集上的预测mask。默认值为None。
+> * **iou_thresh** (float): 判断预测框或预测mask为真阳时的IoU阈值。默认值为0.5。
+> * **save_dir** (str): 可视化结果保存路径。默认值为'./'。
+
+**注意:**`eval_details_file`的优先级更高,只要`eval_details_file`不为None,就会从`eval_details_file`提取真值信息和预测结果做分析。当`eval_details_file`为None时,则用`gt`、`pred_mask`、`pred_mask`做分析。
+
+### 使用示例
+点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/2.0/faster_rcnn_e12.tar.gz)和[数据集](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz)
+
+> 方式一:分析训练过程中保存的模型文件夹中的评估结果文件`eval_details.json`,例如[模型](https://bj.bcebos.com/paddlex/models/insect_epoch_270.zip)中的`eval_details.json`。
+```python
+import paddlex as pdx
+eval_details_file = 'faster_rcnn_e12/eval_details.json'
+pdx.det.draw_pr_curve(eval_details_file, save_dir='./insect')
+```
+> 方式二:分析模型评估函数返回的评估结果。
+
+```python
+import paddlex as pdx
 
+model = pdx.load_model('faster_rcnn_e12')
+eval_dataset = pdx.datasets.VOCDetection(
+    data_dir='insect_det',
+    file_list='insect_det/val_list.txt',
+    label_list='insect_det/labels.txt',
+    transforms=model.test_transforms)
+metrics, evaluate_details = model.evaluate(eval_dataset, batch_size=1, return_details=True)
+gt = evaluate_details['gt']
+bbox = evaluate_details['bbox']
+pdx.det.draw_pr_curve(gt=gt, pred_bbox=bbox, save_dir='./insect')
 ```
 
+预测框的各个类别的准确率和召回率的对应关系、召回率和置信度阈值的对应关系可视化如下:
+![](./images/insect_bbox_pr_curve(iou-0.5).png)
 
-## <h2 id="2">paddlex.seg.visualize</h2>
+
+## <h2 id="3">paddlex.det.coco_error_analysis</h2>
+> 分析模型预测错误的原因
+
+```python
+paddlex.det.coco_error_analysis(eval_details_file=None, gt=None, pred_bbox=None, pred_mask=None, save_dir='./output')
+```
+逐个分析模型预测错误的原因,并将分析结果以图表的形式展示。分析结果图表示例如下:
+
+![](images/detection_analysis.jpg)
+
+左图显示的是`person`类的分析结果,有图显示的是所有类别整体的分析结果。
+
+分析图表展示了7条Precision-Recall(PR)曲线,每一条曲线表示的Average Precision (AP)比它左边那条高,原因是逐步放宽了评估要求。以`person`类为例,各条PR曲线的评估要求解释如下:
+
+* C75: 在IoU设置为0.75时的PR曲线, AP为0.510。
+* C50: 在IoU设置为0.5时的PR曲线,AP为0.724。C50与C75之间的白色区域面积代表将IoU从0.75放宽至0.5带来的AP增益。
+* Loc: 在IoU设置为0.1时的PR曲线,AP为0.832。Loc与C50之间的蓝色区域面积代表将IoU从0.5放宽至0.1带来的AP增益。蓝色区域面积越大,表示越多的检测框位置不够精准。
+* Sim: 在Loc的基础上,如果检测框与真值框的类别不相同,但两者同属于一个亚类,则不认为该检测框是错误的,在这种评估要求下的PR曲线, AP为0.832。Sim与Loc之间的红色区域面积越大,表示子类间的混淆程度越高。
+* Oth: 在Sim的基础上,如果检测框与真值框的亚类不相同,则不认为该检测框是错误的,在这种评估要求下的PR曲线,AP为0.841。Oth与Sim之间的绿色区域面积越大,表示亚类间的混淆程度越高。
+* BG: 在Oth的基础上,背景区域上的检测框不认为是错误的,在这种评估要求下的PR曲线,AP为91.1。BG与Oth之间的紫色区域面积越大,表示背景区域被误检的数量越多。
+* FN: 在BG的基础上,漏检的真值框不认为是错误的,在这种评估要求下的PR曲线,AP为1.00。FN与BG之间的橙色区域面积越大,表示漏检的真值框数量越多。
+
+更为详细的说明参考[COCODataset官网给出分析工具说明](https://cocodataset.org/#detection-eval)
+
+### 参数
+> * **eval_details_file** (str): 模型评估结果的保存路径,包含真值信息和预测结果。默认值为None。
+> * **gt** (list): 数据集的真值信息。默认值为None。
+> * **pred_bbox** (list): 模型在数据集上的预测框。默认值为None。
+> * **pred_mask** (list): 模型在数据集上的预测mask。默认值为None。
+> * **save_dir** (str): 可视化结果保存路径。默认值为'./output'。
+
+**注意:**`eval_details_file`的优先级更高,只要`eval_details_file`不为None,就会从`eval_details_file`提取真值信息和预测结果做分析。当`eval_details_file`为None时,则用`gt`、`pred_mask`、`pred_mask`做分析。
+
+### 使用示例
+点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/insect_epoch_270.zip)和[数据集](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz)
+
+> 方式一:分析训练过程中保存的模型文件夹中的评估结果文件`eval_details.json`,例如[模型](https://bj.bcebos.com/paddlex/models/insect_epoch_270.zip)中的`eval_details.json`。
+```python
+import paddlex as pdx
+eval_details_file = 'insect_epoch_270/eval_details.json'
+pdx.det.coco_error_analysis(eval_details_file, save_dir='./insect')
+```
+> 方式二:分析模型评估函数返回的评估结果。
+
+```python
+import paddlex as pdx
+
+model = pdx.load_model('insect_epoch_270')
+eval_dataset = pdx.datasets.VOCDetection(
+    data_dir='insect_det',
+    file_list='insect_det/val_list.txt',
+    label_list='insect_det/labels.txt',
+    transforms=model.test_transforms)
+metrics, evaluate_details = model.evaluate(eval_dataset, batch_size=8, return_details=True)
+gt = evaluate_details['gt']
+bbox = evaluate_details['bbox']
+pdx.det.coco_error_analysis(gt=gt, pred_bbox=bbox, save_dir='./insect')
+```
+所有类别整体的分析结果示例如下:
+
+![](./images/insect_bbox-allclass-allarea.png)
+
+
+## <h2 id="4">paddlex.seg.visualize</h2>
 
 ```python
 paddlex.seg.visualize(image, result, weight=0.6, save_dir='./', color=None)
@@ -56,7 +168,7 @@ paddlex.seg.visualize(image, result, weight=0.6, save_dir='./', color=None)
 
 使用示例:
 
-```
+```python
 import paddlex as pdx
 model = pdx.load_model('cityscape_deeplab')
 result = model.predict('city.png')
@@ -65,10 +177,10 @@ pdx.seg.visualize('city.png', result, save_dir='./')
 ```
 
 
-## <h2 id="3">paddlex.visualize_det</h2>
+## <h2 id="5">paddlex.visualize_det</h2>
 
 > 是paddlex.det.visualize的别名,接口说明同 [paddlex.det.visualize](./visualize.md#paddlex.det.visualize)
 
-## <h2 id="4">paddlex.visualize_seg</h2>
+## <h2 id="6">paddlex.visualize_seg</h2>
 
 > 是paddlex.seg.visualize的别名,接口说明同 [paddlex.seg.visualize](./visualize.md#paddlex.seg.visualize)

+ 241 - 1
paddlex/cv/models/utils/det_metrics/coco_utils.py

@@ -18,6 +18,8 @@ from __future__ import print_function
 
 import sys
 import copy
+import os
+import os.path as osp
 import numpy as np
 import itertools
 from paddlex.ppdet.metrics.map_utils import draw_pr_curve
@@ -131,7 +133,7 @@ def cocoapi_eval(anns,
         results_flatten = list(itertools.chain(*results_per_category))
         headers = ['category', 'AP'] * (num_columns // 2)
         results_2d = itertools.zip_longest(
-            * [results_flatten[i::num_columns] for i in range(num_columns)])
+            *[results_flatten[i::num_columns] for i in range(num_columns)])
         table_data = [headers]
         table_data += [result for result in results_2d]
         table = AsciiTable(table_data)
@@ -215,3 +217,241 @@ def loadRes(coco_obj, anns):
     res.dataset['annotations'] = anns
     res.createIndex()
     return res
+
+
+def makeplot(rs, ps, outDir, class_name, iou_type):
+    import matplotlib.pyplot as plt
+    cs = np.vstack([
+        np.ones((2, 3)),
+        np.array([0.31, 0.51, 0.74]),
+        np.array([0.75, 0.31, 0.30]),
+        np.array([0.36, 0.90, 0.38]),
+        np.array([0.50, 0.39, 0.64]),
+        np.array([1, 0.6, 0]),
+    ])
+    areaNames = ['allarea', 'small', 'medium', 'large']
+    types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
+    for i in range(len(areaNames)):
+        area_ps = ps[..., i, 0]
+        figure_title = iou_type + '-' + class_name + '-' + areaNames[i]
+        aps = [ps_.mean() for ps_ in area_ps]
+        ps_curve = [
+            ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps
+        ]
+        ps_curve.insert(0, np.zeros(ps_curve[0].shape))
+        fig = plt.figure()
+        ax = plt.subplot(111)
+        for k in range(len(types)):
+            ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5)
+            ax.fill_between(
+                rs,
+                ps_curve[k],
+                ps_curve[k + 1],
+                color=cs[k],
+                label=str(f'[{aps[k]:.3f}]' + types[k]), )
+        plt.xlabel('recall')
+        plt.ylabel('precision')
+        plt.xlim(0, 1.0)
+        plt.ylim(0, 1.0)
+        plt.title(figure_title)
+        plt.legend()
+        # plt.show()
+        fig.savefig(osp.join(outDir, f'{figure_title}.png'))
+        plt.close(fig)
+
+
+def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type,
+                                areas=None):
+    """针对某个特定类别,分析忽略亚类混淆和类别混淆时的准确率。
+
+           Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/coco_error_analysis.py
+
+           Args:
+               k (int): 待分析类别的序号。
+               cocoDt (pycocotols.coco.COCO): 按COCO类存放的预测结果。
+               cocoGt (pycocotols.coco.COCO): 按COCO类存放的真值。
+               catId (int): 待分析类别在数据集中的类别id。
+               iou_type (str): iou计算方式,若为检测框,则设置为'bbox',若为像素级分割结果,则设置为'segm'。
+
+           Returns:
+               int:
+               dict: 有关键字'ps_supercategory'和'ps_allcategory'。关键字'ps_supercategory'的键值是忽略亚类间
+                   混淆时的准确率,关键字'ps_allcategory'的键值是忽略类别间混淆时的准确率。
+
+        """
+
+    # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+    # or matplotlib.backends is imported for the first time
+    # pycocotools import matplotlib
+    import matplotlib
+    matplotlib.use('Agg')
+    from pycocotools.coco import COCO
+    from pycocotools.cocoeval import COCOeval
+
+    nm = cocoGt.loadCats(catId)[0]
+    print(f'--------------analyzing {k + 1}-{nm["name"]}---------------')
+    ps_ = {}
+    dt = copy.deepcopy(cocoDt)
+    nm = cocoGt.loadCats(catId)[0]
+    imgIds = cocoGt.getImgIds()
+    dt_anns = dt.dataset['annotations']
+    select_dt_anns = []
+    for ann in dt_anns:
+        if ann['category_id'] == catId:
+            select_dt_anns.append(ann)
+    dt.dataset['annotations'] = select_dt_anns
+    dt.createIndex()
+    # compute precision but ignore superclass confusion
+    gt = copy.deepcopy(cocoGt)
+    child_catIds = gt.getCatIds(supNms=[nm['supercategory']])
+    for idx, ann in enumerate(gt.dataset['annotations']):
+        if ann['category_id'] in child_catIds and ann['category_id'] != catId:
+            gt.dataset['annotations'][idx]['ignore'] = 1
+            gt.dataset['annotations'][idx]['iscrowd'] = 1
+            gt.dataset['annotations'][idx]['category_id'] = catId
+    cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
+    cocoEval.params.imgIds = imgIds
+    cocoEval.params.maxDets = [100]
+    cocoEval.params.iouThrs = [0.1]
+    cocoEval.params.useCats = 1
+    if areas:
+        cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
+                                   [areas[0], areas[1]], [areas[1], areas[2]]]
+    cocoEval.evaluate()
+    cocoEval.accumulate()
+    ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :]
+    ps_['ps_supercategory'] = ps_supercategory
+    # compute precision but ignore any class confusion
+    gt = copy.deepcopy(cocoGt)
+    for idx, ann in enumerate(gt.dataset['annotations']):
+        if ann['category_id'] != catId:
+            gt.dataset['annotations'][idx]['ignore'] = 1
+            gt.dataset['annotations'][idx]['iscrowd'] = 1
+            gt.dataset['annotations'][idx]['category_id'] = catId
+    cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
+    cocoEval.params.imgIds = imgIds
+    cocoEval.params.maxDets = [100]
+    cocoEval.params.iouThrs = [0.1]
+    cocoEval.params.useCats = 1
+    if areas:
+        cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
+                                   [areas[0], areas[1]], [areas[1], areas[2]]]
+    cocoEval.evaluate()
+    cocoEval.accumulate()
+    ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :]
+    ps_['ps_allcategory'] = ps_allcategory
+    return k, ps_
+
+
+def coco_error_analysis(eval_details_file=None,
+                        gt=None,
+                        pred_bbox=None,
+                        pred_mask=None,
+                        save_dir='./output'):
+    """逐个分析模型预测错误的原因,并将分析结果以图表的形式展示。
+       分析结果说明参考COCODataset官网给出分析工具说明https://cocodataset.org/#detection-eval。
+
+       Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py
+
+       Args:
+           eval_details_file (str):  模型评估结果的保存路径,包含真值信息和预测结果。
+           gt (list): 数据集的真值信息。默认值为None。
+           pred_bbox (list): 模型在数据集上的预测框。默认值为None。
+           pred_mask (list): 模型在数据集上的预测mask。默认值为None。
+           save_dir (str): 可视化结果保存路径。默认值为'./output'。
+
+        Note:
+           eval_details_file的优先级更高,只要eval_details_file不为None,
+           就会从eval_details_file提取真值信息和预测结果做分析。
+           当eval_details_file为None时,则用gt、pred_mask、pred_mask做分析。
+
+    """
+
+    import multiprocessing as mp
+    # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+    # or matplotlib.backends is imported for the first time
+    # pycocotools import matplotlib
+    import matplotlib
+    matplotlib.use('Agg')
+    from pycocotools.coco import COCO
+    from pycocotools.cocoeval import COCOeval
+
+    if eval_details_file is not None:
+        import json
+        with open(eval_details_file, 'r') as f:
+            eval_details = json.load(f)
+            pred_bbox = eval_details['bbox']
+            if 'mask' in eval_details:
+                pred_mask = eval_details['mask']
+            gt = eval_details['gt']
+    if gt is None or pred_bbox is None:
+        raise Exception(
+            "gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask."
+        )
+    if pred_bbox is not None and len(pred_bbox) == 0:
+        raise Exception("There is no predicted bbox.")
+    if pred_mask is not None and len(pred_mask) == 0:
+        raise Exception("There is no predicted mask.")
+
+    def _analyze_results(cocoGt, cocoDt, res_type, out_dir):
+        directory = osp.dirname(osp.join(out_dir, ''))
+        if not osp.exists(directory):
+            logging.info('-------------create {}-----------------'.format(
+                out_dir))
+            os.makedirs(directory)
+
+        imgIds = cocoGt.getImgIds()
+        res_out_dir = osp.join(out_dir, res_type, '')
+        res_directory = os.path.dirname(res_out_dir)
+        if not os.path.exists(res_directory):
+            logging.info('-------------create {}-----------------'.format(
+                res_out_dir))
+            os.makedirs(res_directory)
+        iou_type = res_type
+        cocoEval = COCOeval(
+            copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type)
+        cocoEval.params.imgIds = imgIds
+        cocoEval.params.iouThrs = [.75, .5, .1]
+        cocoEval.params.maxDets = [100]
+        cocoEval.evaluate()
+        cocoEval.accumulate()
+        ps = cocoEval.eval['precision']
+        ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))])
+        catIds = cocoGt.getCatIds()
+        recThrs = cocoEval.params.recThrs
+        thread_num = mp.cpu_count() if mp.cpu_count() < 8 else 8
+        thread_pool = mp.pool.ThreadPool(thread_num)
+        args = [(k, cocoDt, cocoGt, catId, iou_type)
+                for k, catId in enumerate(catIds)]
+        analyze_results = thread_pool.starmap(analyze_individual_category,
+                                              args)
+        for k, catId in enumerate(catIds):
+            nm = cocoGt.loadCats(catId)[0]
+            logging.info('--------------saving {}-{}---------------'.format(
+                k + 1, nm['name']))
+            analyze_result = analyze_results[k]
+            assert k == analyze_result[0], ""
+            ps_supercategory = analyze_result[1]['ps_supercategory']
+            ps_allcategory = analyze_result[1]['ps_allcategory']
+            # compute precision but ignore superclass confusion
+            ps[3, :, k, :, :] = ps_supercategory
+            # compute precision but ignore any class confusion
+            ps[4, :, k, :, :] = ps_allcategory
+            # fill in background and false negative errors and plot
+            ps[ps == -1] = 0
+            ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0
+            ps[6, :, k, :, :] = 1.0
+            makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type)
+        makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
+
+    coco_gt = COCO()
+    coco_gt.dataset = gt
+    coco_gt.createIndex()
+
+    if pred_bbox is not None:
+        coco_dt = loadRes(coco_gt, pred_bbox)
+        _analyze_results(coco_gt, coco_dt, res_type='bbox', out_dir=save_dir)
+    if pred_mask is not None:
+        coco_dt = loadRes(coco_gt, pred_mask)
+        _analyze_results(coco_gt, coco_dt, res_type='segm', out_dir=save_dir)
+    logging.info("The analysis figures are saved in {}".format(save_dir))

+ 2 - 0
paddlex/det.py

@@ -15,6 +15,7 @@
 import sys
 from . import cv
 from .cv.models.utils.visualize import visualize_detection, draw_pr_curve
+from .cv.models.utils.det_metrics.coco_utils import coco_error_analysis
 
 message = 'Your running script needs PaddleX<2.0.0, please refer to {} to solve this issue.'.format(
     'https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#%E7%89%88%E6%9C%AC%E5%8D%87%E7%BA%A7'
@@ -31,6 +32,7 @@ def __getattr__(attr):
 
 visualize = visualize_detection
 draw_pr_curve = draw_pr_curve
+coco_error_analysis = coco_error_analysis
 
 # detection
 YOLOv3 = cv.models.YOLOv3