Explorar o código

repair link bug (#2244)

* repair link bug

* replace Solov2 into SOLOv2
liuhongen1234567 hai 1 ano
pai
achega
8581beb551

+ 9 - 8
docs/module_usage/tutorials/cv_modules/instance_segmentation.md

@@ -77,7 +77,7 @@
         <td>-</td>
         <td>-</td>
         <td>157.5 M</td>
-        <td rowspan="7">Mask R-CNN是由华盛顿首例即现投影卡的一个全任务深度学习模型,能够在一个模型中完成图片实例的分类和定位,并结合图像级的遮罩(Mask)来完成分割任务。</td>
+        <td rowspan="6">Mask R-CNN是由华盛顿首例即现投影卡的一个全任务深度学习模型,能够在一个模型中完成图片实例的分类和定位,并结合图像级的遮罩(Mask)来完成分割任务。</td>
     </tr>
     <tr>
         <td>MaskRCNN-ResNet50-vd-FPN</td>
@@ -87,13 +87,6 @@
         <td>157.5 M</td>
     </tr>
     <tr>
-        <td>MaskRCNN-ResNet50-vd-SSLDv2-FPN</td>
-        <td>38.2</td>
-        <td>-</td>
-        <td>-</td>
-        <td>127.2 M</td>
-    </tr>
-    <tr>
         <td>MaskRCNN-ResNet50</td>
         <td>32.8</td>
         <td>-</td>
@@ -130,6 +123,14 @@
         <td>31.5 M</td>
         <td>PP-YOLOE_seg 是一种基于PP-YOLOE的实例分割模型。该模型沿用了PP-YOLOE的backbone和head,通过设计PP-YOLOE实例分割头,大幅提升了实例分割的性能和推理速度。</td>
     </tr>
+    <tr>
+        <td>SOLOv2</td>
+        <td>35.5</td>
+        <td>-</td>
+        <td>-</td>
+        <td>179.1 M</td>
+        <td> SOLOv2 是一种按位置分割物体的实时实例分割算法。该模型是SOLO的改进版本,通过引入掩码学习和掩码NMS,实现了精度和速度上取得良好平衡。</td>
+    </tr>
 </table>
 
 

+ 13 - 12
docs/module_usage/tutorials/cv_modules/instance_segmentation_en.md

@@ -76,7 +76,7 @@ The instance segmentation module is a crucial component in computer vision syste
         <td>-</td>
         <td>-</td>
         <td>157.5 M</td>
-        <td rowspan="7">Mask R-CNN is a full-task deep learning model from Facebook AI Research (FAIR) that can perform object classification and localization in a single model, combined with image-level masks to complete segmentation tasks.</td>
+        <td rowspan="6">Mask R-CNN is a full-task deep learning model from Facebook AI Research (FAIR) that can perform object classification and localization in a single model, combined with image-level masks to complete segmentation tasks.</td>
     </tr>
     <tr>
         <td>MaskRCNN-ResNet50-vd-FPN</td>
@@ -86,13 +86,6 @@ The instance segmentation module is a crucial component in computer vision syste
         <td>157.5 M</td>
     </tr>
     <tr>
-        <td>MaskRCNN-ResNet50-vd-SSLDv2-FPN</td>
-        <td>38.2</td>
-        <td>-</td>
-        <td>-</td>
-        <td>127.2 M</td>
-    </tr>
-    <tr>
         <td>MaskRCNN-ResNet50</td>
         <td>32.8</td>
         <td>-</td>
@@ -129,6 +122,14 @@ The instance segmentation module is a crucial component in computer vision syste
         <td>31.5 M</td>
         <td>PP-YOLOE_seg is an instance segmentation model based on PP-YOLOE. This model inherits PP-YOLOE's backbone and head, significantly enhancing instance segmentation performance and inference speed through the design of a PP-YOLOE instance segmentation head.</td>
     </tr>
+        <tr>
+        <td>SOLOv2</td>
+        <td>35.5</td>
+        <td>-</td>
+        <td>-</td>
+        <td>179.1 M</td>
+        <td> SOLOv2 is a real-time instance segmentation algorithm that segments objects by location. This model is an improved version of SOLO, achieving a good balance between accuracy and speed through the introduction of mask learning and mask NMS.</td>
+    </tr>
 </table>
 
 
@@ -244,7 +245,7 @@ tar -xf ./dataset/instance_seg_labelme_examples.tar -C ./dataset/
 ......
 CheckDataset:
   ......
-  convert: 
+  convert:
     enable: True
     src_dataset_type: LabelMe
   ......
@@ -254,7 +255,7 @@ Then execute the command:
 ```bash
 python main.py -c paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml\
     -o Global.mode=check_dataset \
-    -o Global.dataset_dir=./dataset/instance_seg_labelme_examples 
+    -o Global.dataset_dir=./dataset/instance_seg_labelme_examples
 ```
 After the data conversion is executed, the original annotation files will be renamed to `xxx.bak` in the original path.
 
@@ -295,7 +296,7 @@ Then execute the command:
 ```bash
 python main.py -c paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml \
     -o Global.mode=check_dataset \
-    -o Global.dataset_dir=./dataset/instance_seg_labelme_examples 
+    -o Global.dataset_dir=./dataset/instance_seg_labelme_examples
 ```
 After data splitting, the original annotation files will be renamed as `xxx.bak` in the original path.
 
@@ -323,7 +324,7 @@ The following steps are required:
 
 * Specify the path to the `.yaml` configuration file of the model (here it is `Mask-RT-DETR-L.yaml`)
 * Specify the mode as model training: `-o Global.mode=train`
-* Specify the path to the training dataset: `-o Global.dataset_dir`. 
+* Specify the path to the training dataset: `-o Global.dataset_dir`.
 Other related parameters can be set by modifying the fields under `Global` and `Train` in the `.yaml` configuration file, or adjusted by appending parameters in the command line. For example, to specify the first 2 GPUs for training: `-o Global.device=gpu:0,1`; to set the number of training epochs to 10: `-o Train.epochs_iters=10`. For more modifiable parameters and their detailed explanations, refer to the [PaddleX Common Configuration File Parameters Instructions](../../instructions/config_parameters_common_en.md).
 
 <details>

+ 1 - 1
docs/pipeline_usage/tutorials/cv_pipelines/instance_segmentation.md

@@ -23,12 +23,12 @@
 |Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN|39.1|-|-|254.7|
 |MaskRCNN-ResNet50-FPN|35.6|-|-|157.5 M|
 |MaskRCNN-ResNet50-vd-FPN|36.4|-|-|157.5 M|
-|MaskRCNN-ResNet50-vd-SSLDv2-FPN|38.2|-|-|157.2 M|
 |MaskRCNN-ResNet50|32.8|-|-|127.8 M|
 |MaskRCNN-ResNet101-FPN|36.6|-|-|225.4 M|
 |MaskRCNN-ResNet101-vd-FPN|38.1|-|-|225.1 M|
 |MaskRCNN-ResNeXt101-vd-FPN|39.5|-|-|370.0 M|
 |PP-YOLOE_seg-S|32.5|-|-|31.5 M|
+|SOLOv2| 35.5|-|-|179.1 M|
 
 **注:以上精度指标为 **[COCO2017](https://cocodataset.org/#home)** 验证集 Mask AP(0.5:0.95)。以上所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。**
 

+ 1 - 1
docs/pipeline_usage/tutorials/cv_pipelines/instance_segmentation_en.md

@@ -24,12 +24,12 @@ Instance segmentation is a computer vision task that not only identifies the obj
 |Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN|39.1|-|-|254.7|
 |MaskRCNN-ResNet50-FPN|35.6|-|-|157.5 M|
 |MaskRCNN-ResNet50-vd-FPN|36.4|-|-|157.5 M|
-|MaskRCNN-ResNet50-vd-SSLDv2-FPN|38.2|-|-|157.2 M|
 |MaskRCNN-ResNet50|32.8|-|-|127.8 M|
 |MaskRCNN-ResNet101-FPN|36.6|-|-|225.4 M|
 |MaskRCNN-ResNet101-vd-FPN|38.1|-|-|225.1 M|
 |MaskRCNN-ResNeXt101-vd-FPN|39.5|-|-|370.0 M|
 |PP-YOLOE_seg-S|32.5|-|-|31.5 M|
+|SOLOv2| 35.5|-|-|179.1 M|
 
 **Note: The above accuracy metrics are Mask AP(0.5:0.95) on the **[COCO2017](https://cocodataset.org/#home)** validation set. All GPU inference times are based on an NVIDIA Tesla T4 machine with FP32 precision. CPU inference speeds are based on an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz with 8 threads and FP32 precision.**
 

+ 7 - 7
docs/practical_tutorials/ts_anomaly_detection_en.md

@@ -39,7 +39,7 @@ PaddleX provides five end-to-end time series anomaly detection models. For detai
 
 To demonstrate the entire process of time series anomaly detection, we will use the publicly available MSL (Mars Science Laboratory) dataset for model training and validation. The PSM (Planetary Science Mission) dataset, sourced from NASA, comprises 55 dimensions and includes telemetry anomaly data reported by the spacecraft's monitoring system for unexpected event anomalies (ISA). With its practical application background, it better reflects real-world anomaly scenarios and is commonly used to test and validate the performance of time series anomaly detection models. This tutorial will perform anomaly detection based on this dataset.
 
-We have converted the dataset into a standard data format, and you can obtain a sample dataset using the following command. For an introduction to the data format, please refer to the [Time Series Anomaly Detection Module Development Tutorial](../module_usage/tutorials/time_series_modules/time_series_anomaly_detection_en.md).
+We have converted the dataset into a standard data format, and you can obtain a sample dataset using the following command. For an introduction to the data format, please refer to the [Time Series Anomaly Detection Module Development Tutorial](../module_usage/tutorials/ts_modules/time_series_anomaly_detection_en.md).
 
 
 You can use the following commands to download the demo dataset to a specified folder:
@@ -54,7 +54,7 @@ tar -xf ./dataset/msl.tar -C ./dataset/
  * Time series anomaly detection is an unsupervised learning task, thus labeled training data is not required. The collected training samples should ideally consist solely of normal data, i.e., devoid of anomalies, with the label column in the training set set to 0 or, alternatively, the label column can be omitted entirely. For the validation set, to assess accuracy, labeling is necessary. Points that are anomalous at a particular timestamp should have their labels set to 1, while normal points should have labels of 0.
  * Handling Missing Values: To ensure data quality and integrity, missing values can be imputed based on expert knowledge or statistical methods.
  * Non-Repetitiveness: Ensure that data is collected in chronological order by row, with no duplication of timestamps.
-  
+
 ### 4.2 Data Validation
 Data Validation can be completed with just one command:
 
@@ -102,7 +102,7 @@ The above verification results have omitted some data parts. `check_pass` being
 **Note**: Only data that passes the verification can be used for training and evaluation.
 
 ### 4.3 Dataset Format Conversion/Dataset Splitting (Optional)
-If you need to convert the dataset format or re-split the dataset, refer to Section 4.1.3 in the [Time Series Anomaly Detection Module Development Tutorial](../module_usage/tutorials/time_series_modules/time_series_anomaly_detection_en.md).
+If you need to convert the dataset format or re-split the dataset, refer to Section 4.1.3 in the [Time Series Anomaly Detection Module Development Tutorial](../module_usage/tutorials/ts_modules/time_series_anomaly_detection_en.md).
 
 ## 5. Model Training and Evaluation
 ### 5.1 Model Training
@@ -119,7 +119,7 @@ python main.py -c paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml \
 -o Train.feature_cols=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 \
 -o Train.freq=1 \
 -o Train.label_col=label \
--o Train.seq_len=96 
+-o Train.seq_len=96
 ```
 PaddleX supports modifying training hyperparameters and single-machine single-GPU training (time series models only support single-GPU training). Simply modify the configuration file or append command-line parameters.
 
@@ -133,7 +133,7 @@ Each model in PaddleX provides a configuration file for model development to set
   * `learning_rate`: Training learning rate.
   * `batch_size`: Training batch size for a single GPU.
   * `time_col`: Time column, set the column name of the time series dataset's time column based on your data.
-  * `feature_cols`: Feature variables indicating variables related to whether the device is abnormal. 
+  * `feature_cols`: Feature variables indicating variables related to whether the device is abnormal.
   * `freq`: Frequency of the time series dataset.
   * `input_len`: The length of the time series input to the model. The time series will be sliced according to this length, and the model will predict whether there is an anomaly in this segment of the time series for that length. The recommended input length should be considered in the context of the actual scenario. In this tutorial, the input length is 96, which means we hope to predict whether there are anomalies at 96 time points.
   * `label`: Represents the number indicating whether a time point in the time series is abnormal. Anomalous points are labeled as 1, and normal points are labeled as 0. In this tutorial, the anomaly monitoring dataset uses label for this purpose.
@@ -228,8 +228,8 @@ from paddlex import create_pipeline
 pipeline = create_pipeline(pipeline="ts_anomaly_detection")
 output = pipeline.predict("pre_ts.csv")
 for res in output:
-    res.print() 
-    res.save_to_csv("./output/") 
+    res.print()
+    res.save_to_csv("./output/")
 ```
 For more parameters, please refer to the [Time Series Anomaly Detection Pipeline Usage Tutorial](../pipeline_usage/tutorials/time_series_pipelines/time_series_anomaly_detection_en.md)
 

+ 3 - 3
docs/practical_tutorials/ts_classification_en.md

@@ -36,7 +36,7 @@ PaddleX provides a time series classification model. Refer to the [Model List](.
 ### 4.1 Data Preparation
 To demonstrate the entire time series classification process, we will use the public [Heartbeat Dataset](https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ts_classify_examples.tar) for model training and validation. The Heartbeat Dataset is part of the UEA Time Series Classification Archive, addressing the practical task of heartbeat monitoring for medical diagnosis. The dataset comprises multiple time series groups, with each data point consisting of a label variable, group ID, and 61 feature variables. This dataset is commonly used to test and validate the performance of time series classification prediction models.
 
-We have converted the dataset into a standard format, which can be obtained using the following commands. For data format details, refer to the [Time Series Classification Module Development Tutorial](../module_usage/tutorials/time_series_modules/time_series_classification_en.md).
+We have converted the dataset into a standard format, which can be obtained using the following commands. For data format details, refer to the [Time Series Classification Module Development Tutorial](../module_usage/tutorials/ts_modules/time_series_classification_en.md).
 
 Dataset Acquisition Command:
 
@@ -97,7 +97,7 @@ The above verification results have omitted some data parts. `check_pass` being
 **Note**: Only data that passes the verification can be used for training and evaluation.
 
 ### 4.3 Dataset Format Conversion / Dataset Splitting (Optional)
-If you need to convert the dataset format or re-split the dataset, please refer to Section 4.1.3 in the [Time Series Classification Module Development Tutorial](../module_usage/tutorials/time_series_modules/time_series_classification_en.md).
+If you need to convert the dataset format or re-split the dataset, please refer to Section 4.1.3 in the [Time Series Classification Module Development Tutorial](../module_usage/tutorials/ts_modules/time_series_classification_en.md).
 
 ## 5. Model Training and Evaluation
 
@@ -115,7 +115,7 @@ python main.py -c paddlex/configs/ts_classification/TimesNet_cls.yaml \
 -o Train.target_cols=dim_0,dim_1,dim_2 \
 -o Train.freq=1 \
 -o Train.group_id=group_id \
--o Train.static_cov_cols=label 
+-o Train.static_cov_cols=label
 ```
 PaddleX supports modifying training hyperparameters and single-machine single-GPU training (time-series models only support single-GPU training). Simply modify the configuration file or append command-line parameters.
 

+ 5 - 5
docs/practical_tutorials/ts_forecast_en.md

@@ -42,7 +42,7 @@ Based on your actual usage scenario, select an appropriate model for training. A
 ### 4.1 Data Preparation
 To demonstrate the entire time series forecasting process, we will use the [Electricity](https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014) dataset for model training and validation. This dataset collects electricity consumption at a certain node from 2012 to 2014, with data collected every hour. Each data point consists of the current timestamp and corresponding electricity consumption. This dataset is commonly used to test and validate the performance of time series forecasting models.
 
-In this tutorial, we will use this dataset to predict the electricity consumption for the next 96 hours. We have already converted this dataset into a standard data format, and you can obtain a sample dataset by running the following command. For an introduction to the data format, you can refer to the [Time Series Prediction Module Development Tutorial](../module_usage/tutorials/time_series_modules/time_series_forecast_en.md).
+In this tutorial, we will use this dataset to predict the electricity consumption for the next 96 hours. We have already converted this dataset into a standard data format, and you can obtain a sample dataset by running the following command. For an introduction to the data format, you can refer to the [Time Series Prediction Module Development Tutorial](../module_usage/tutorials/ts_modules/time_series_forecast_en.md).
 
 
 You can use the following commands to download the demo dataset to a specified folder:
@@ -176,7 +176,7 @@ After executing the above command, PaddleX will validate the dataset, summarize
   "dataset_path": "./dataset/electricity",
   "show_type": "csv",
   "dataset_type": "TSDataset"
-} 
+}
 ```
 
 The above verification results have omitted some data parts. `check_pass` being True indicates that the dataset format meets the requirements. Explanations for other indicators are as follows:
@@ -190,7 +190,7 @@ The above verification results have omitted some data parts. `check_pass` being
 **Note**: Only data that passes the verification can be used for training and evaluation.
 
 ### 4.3 Dataset Format Conversion/Dataset Splitting (Optional)
-If you need to convert the dataset format or re-split the dataset, you can modify the configuration file or append hyperparameters for settings. Refer to Section 4.1.3 in the [Time Series Prediction Module Development Tutorial](../module_usage/tutorials/time_series_modules/time_series_forecast_en.md).
+If you need to convert the dataset format or re-split the dataset, you can modify the configuration file or append hyperparameters for settings. Refer to Section 4.1.3 in the [Time Series Prediction Module Development Tutorial](../module_usage/tutorials/ts_modules/time_series_forecast_en.md).
 
 ## 5. Model Training and Evaluation
 
@@ -343,8 +343,8 @@ from paddlex import create_pipeline
 pipeline = create_pipeline(pipeline="ts_forecast")
 output = pipeline.predict("pre_ts.csv")
 for res in output:
-    res.print() 
-    res.save_to_csv("./output/") 
+    res.print()
+    res.save_to_csv("./output/")
 ```
 For more parameters, please refer to the [Time Series forecast Pipeline Usage Tutorial](../pipeline_usage/tutorials/time_series_pipelines/time_series_anomaly_detection_en.md)
 

+ 1 - 1
docs/support_list/models_list.md

@@ -262,12 +262,12 @@ PaddleX 内置了多条产线,每条产线都包含了若干模块,每个模
 |Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN|39.1|-|-|254.7 M|[Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml](../../paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml)|
 |MaskRCNN-ResNet50-FPN|35.6|-|-|157.5 M|[MaskRCNN-ResNet50-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml)|
 |MaskRCNN-ResNet50-vd-FPN|36.4|-|-|157.5 M|[MaskRCNN-ResNet50-vd-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml)|
-|MaskRCNN-ResNet50-vd-SSLDv2-FPN|38.2|-|-|157.2 M|[MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml)|
 |MaskRCNN-ResNet50|32.8|-|-|127.8 M|[MaskRCNN-ResNet50.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml)|
 |MaskRCNN-ResNet101-FPN|36.6|-|-|225.4 M|[MaskRCNN-ResNet101-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml)|
 |MaskRCNN-ResNet101-vd-FPN|38.1|-|-|225.1 M|[MaskRCNN-ResNet101-vd-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml)|
 |MaskRCNN-ResNeXt101-vd-FPN|39.5|-|-|370.0 M|[MaskRCNN-ResNeXt101-vd-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml)|
 |PP-YOLOE_seg-S|32.5|-|-|31.5 M|[PP-YOLOE_seg-S.yaml](../../paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml)|
+|SOLOv2| 35.5|-|-|179.1 M|[SOLOv2.yaml](../../paddlex/configs/instance_segmentation/SOLOv2.yaml)
 
 **注:以上精度指标为 **[COCO2017](https://cocodataset.org/#home)** 验证集 Mask AP(0.5:0.95)。**
 

+ 1 - 1
docs/support_list/models_list_en.md

@@ -265,12 +265,12 @@ PaddleX incorporates multiple pipelines, each containing several modules, and ea
 |Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN|39.1|-|-|254.7 M|[Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml](../../paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml)|
 |MaskRCNN-ResNet50-FPN|35.6|-|-|157.5 M|[MaskRCNN-ResNet50-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml)|
 |MaskRCNN-ResNet50-vd-FPN|36.4|-|-|157.5 M|[MaskRCNN-ResNet50-vd-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml)|
-|MaskRCNN-ResNet50-vd-SSLDv2-FPN|38.2|-|-|157.2 M|[MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml)|
 |MaskRCNN-ResNet50|32.8|-|-|127.8 M|[MaskRCNN-ResNet50.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml)|
 |MaskRCNN-ResNet101-FPN|36.6|-|-|225.4 M|[MaskRCNN-ResNet101-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml)|
 |MaskRCNN-ResNet101-vd-FPN|38.1|-|-|225.1 M|[MaskRCNN-ResNet101-vd-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml)|
 |MaskRCNN-ResNeXt101-vd-FPN|39.5|-|-|370.0 M|[MaskRCNN-ResNeXt101-vd-FPN.yaml](../../paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml)|
 |PP-YOLOE_seg-S|32.5|-|-|31.5 M|[PP-YOLOE_seg-S.yaml](../../paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml)|
+|SOLOv2| 35.5|-|-|179.1 M|[SOLOv2.yaml](../../paddlex/configs/instance_segmentation/SOLOv2.yaml)
 
 **Note: The above accuracy metrics are evaluated on the **[COCO2017](https://cocodataset.org/#home)** validation set using Mask AP(0.5:0.95).**