Prechádzať zdrojové kódy

style with new pre-commit

gaotingquan 1 rok pred
rodič
commit
8617d3d914
100 zmenil súbory, kde vykonal 186 pridanie a 182 odobranie
  1. 1 1
      .github/ISSUE_TEMPLATE/5_other.md
  2. 1 1
      .style.yapf
  3. 0 1
      LICENSE
  4. 4 4
      README.md
  5. 2 4
      docs/CHANGELOG.md
  6. 1 1
      docs/tutorials/data/annotation/OCRAnnoTools.md
  7. 2 2
      docs/tutorials/data/dataset_check.md
  8. 3 3
      docs/tutorials/data/dataset_format.md
  9. 1 1
      docs/tutorials/pipelines/pipeline_develop_tools.md
  10. 1 1
      docs/tutorials/pipelines/pipeline_inference.md
  11. 1 1
      docs/tutorials/pipelines/pipeline_inference_api.md
  12. 2 2
      docs/tutorials/practical_tutorial/image_classification_garbage_tutorial.md
  13. 2 2
      docs/tutorials/practical_tutorial/instance_segmentation_remote_sensing_tutorial.md
  14. 3 3
      docs/tutorials/practical_tutorial/object_detection_fall_tutorial.md
  15. 3 3
      docs/tutorials/practical_tutorial/object_detection_fashion_pedia_tutorial.md
  16. 12 12
      docs/tutorials/practical_tutorial/ocr_det_license_tutorial.md
  17. 14 14
      docs/tutorials/practical_tutorial/ocr_rec_chinese_tutorial.md
  18. 3 3
      docs/tutorials/practical_tutorial/semantic_segmentation_road_tutorial.md
  19. 8 8
      docs/tutorials/practical_tutorial/ts_anomaly_detection.md
  20. 5 5
      docs/tutorials/practical_tutorial/ts_classification.md
  21. 8 8
      docs/tutorials/practical_tutorial/ts_forecast.md
  22. 16 14
      install_pdx.py
  23. 1 1
      main.py
  24. 16 11
      paddlex/__init__.py
  25. 1 1
      paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml
  26. 1 1
      paddlex/configs/image_classification/MobileNetV2_x0_25.yaml
  27. 1 1
      paddlex/configs/image_classification/MobileNetV2_x0_5.yaml
  28. 1 1
      paddlex/configs/image_classification/MobileNetV2_x1_0.yaml
  29. 1 1
      paddlex/configs/image_classification/MobileNetV2_x1_5.yaml
  30. 1 1
      paddlex/configs/image_classification/MobileNetV2_x2_0.yaml
  31. 1 1
      paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml
  32. 1 1
      paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml
  33. 1 1
      paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml
  34. 1 1
      paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml
  35. 1 1
      paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml
  36. 1 1
      paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml
  37. 1 1
      paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml
  38. 1 1
      paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml
  39. 1 1
      paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml
  40. 1 1
      paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml
  41. 1 1
      paddlex/configs/image_classification/PP-HGNetV2-B0.yaml
  42. 1 1
      paddlex/configs/image_classification/PP-HGNetV2-B4.yaml
  43. 1 1
      paddlex/configs/image_classification/PP-HGNetV2-B6.yaml
  44. 1 1
      paddlex/configs/image_classification/PP-HGNet_small.yaml
  45. 1 1
      paddlex/configs/image_classification/PP-LCNet_x0_35.yaml
  46. 1 1
      paddlex/configs/image_classification/PP-LCNet_x0_5.yaml
  47. 1 1
      paddlex/configs/image_classification/PP-LCNet_x0_75.yaml
  48. 1 1
      paddlex/configs/image_classification/PP-LCNet_x1_0.yaml
  49. 1 1
      paddlex/configs/image_classification/PP-LCNet_x1_5.yaml
  50. 1 1
      paddlex/configs/image_classification/PP-LCNet_x2_0.yaml
  51. 1 1
      paddlex/configs/image_classification/PP-LCNet_x2_5.yaml
  52. 1 1
      paddlex/configs/image_classification/ResNet101.yaml
  53. 1 1
      paddlex/configs/image_classification/ResNet152.yaml
  54. 1 1
      paddlex/configs/image_classification/ResNet34.yaml
  55. 1 1
      paddlex/configs/image_classification/ResNet50.yaml
  56. 1 1
      paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml
  57. 1 1
      paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml
  58. 1 1
      paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml
  59. 1 1
      paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml
  60. 1 1
      paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml
  61. 1 1
      paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml
  62. 1 1
      paddlex/configs/object_detection/PicoDet-L.yaml
  63. 1 1
      paddlex/configs/object_detection/PicoDet-S.yaml
  64. 1 1
      paddlex/configs/object_detection/RT-DETR-H.yaml
  65. 1 1
      paddlex/configs/object_detection/RT-DETR-L.yaml
  66. 1 1
      paddlex/configs/object_detection/RT-DETR-R18.yaml
  67. 1 1
      paddlex/configs/object_detection/RT-DETR-R50.yaml
  68. 1 1
      paddlex/configs/object_detection/RT-DETR-X.yaml
  69. 1 1
      paddlex/configs/object_detection/YOLOX-L.yaml
  70. 1 1
      paddlex/configs/object_detection/YOLOX-M.yaml
  71. 1 1
      paddlex/configs/object_detection/YOLOX-N.yaml
  72. 1 1
      paddlex/configs/object_detection/YOLOX-S.yaml
  73. 1 1
      paddlex/configs/object_detection/YOLOX-T.yaml
  74. 1 1
      paddlex/configs/object_detection/YOLOX-X.yaml
  75. 1 1
      paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml
  76. 1 1
      paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml
  77. 1 1
      paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml
  78. 1 1
      paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml
  79. 1 1
      paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml
  80. 1 1
      paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml
  81. 1 1
      paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml
  82. 1 1
      paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml
  83. 1 1
      paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml
  84. 1 1
      paddlex/configs/semantic_segmentation/SeaFormer_base.yaml
  85. 1 1
      paddlex/configs/semantic_segmentation/SeaFormer_large.yaml
  86. 1 1
      paddlex/configs/semantic_segmentation/SeaFormer_small.yaml
  87. 1 1
      paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml
  88. 1 1
      paddlex/configs/semantic_segmentation/SegFormer-B0.yaml
  89. 1 1
      paddlex/configs/semantic_segmentation/SegFormer-B1.yaml
  90. 1 1
      paddlex/configs/semantic_segmentation/SegFormer-B2.yaml
  91. 1 1
      paddlex/configs/semantic_segmentation/SegFormer-B3.yaml
  92. 1 1
      paddlex/configs/semantic_segmentation/SegFormer-B4.yaml
  93. 1 1
      paddlex/configs/semantic_segmentation/SegFormer-B5.yaml
  94. 1 1
      paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml
  95. 1 1
      paddlex/configs/table_recognition/SLANet.yaml
  96. 1 1
      paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml
  97. 1 1
      paddlex/configs/text_detection/PP-OCRv4_server_det.yaml
  98. 1 1
      paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml
  99. 1 1
      paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml
  100. 1 1
      paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml

+ 1 - 1
.github/ISSUE_TEMPLATE/5_other.md

@@ -16,7 +16,7 @@ assignees: ''
 
 ## 描述问题
 
-## 复现 
+## 复现
 
 1. 您是否已经正常运行我们提供的[教程](https://github.com/PaddlePaddle/PaddleX/tree/develop/tutorials)?
 

+ 1 - 1
.style.yapf

@@ -1,3 +1,3 @@
 [style]
 based_on_style = pep8
-column_limit = 80
+column_limit = 80

+ 0 - 1
LICENSE

@@ -167,4 +167,3 @@
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
-

+ 4 - 4
README.md

@@ -125,7 +125,7 @@ PaddleX 3.0 覆盖了 16 条产业级模型产线,其中 9 条基础产线可
     <td>时序预测</td>
     <td>时序预测</td>
     <td>DLinear<br/>Nonstationary<br/>TiDE<br/>PatchTST<br/>TimesNet</td>
-  </tr>  
+  </tr>
   <tr>
     <td>基础产线</td>
     <td>时序异常检测</td>
@@ -160,7 +160,7 @@ PaddleX 3.0 覆盖了 16 条产业级模型产线,其中 9 条基础产线可
   <tr>
     <td>大模型半监督学习-文本识别</td>
     <td>PP-OCRv4_mobile_rec<br/>PP-OCRv4_server_rec</td>
-   </tr>  
+   </tr>
 <tr>
     <td rowspan="3">特色产线</td>
     <td rowspan="3">通用场景信息抽取v2<br>(PP-ChatOCRv2-common)</td>
@@ -202,13 +202,13 @@ PaddleX 3.0 覆盖了 16 条产业级模型产线,其中 9 条基础产线可
     <td>多模型融合时序预测v2<br>(PP-TSv2_forecast)</td>
     <td>时序预测</td>
     <td>多模型融合时序预测</td>
-  </tr> 
+  </tr>
   <tr>
     <td>特色产线</td>
     <td>多模型融合时序异常检测v2<br>(PP-TSv2_anomaly)</td>
     <td>时序异常检测</td>
     <td>多模型融合时序异常检测</td>
-  </tr>      
+  </tr>
 </table>
 
 

+ 2 - 4
docs/CHANGELOG.md

@@ -44,7 +44,7 @@ PaddleX 3.0beta 集成了飞桨生态的优势能力,覆盖 7 大场景任务
 
 ### PaddleX v2.0.0rc0(5.19/2021)
 * 全面支持飞桨2.0动态图,更易用的开发模式
-* 目标检测任务新增[PP-YOLOv2](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/object_detection/ppyolov2.py), COCO test数据集精度达到49.5%、V100预测速度达到68.9 FPS 
+* 目标检测任务新增[PP-YOLOv2](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/object_detection/ppyolov2.py), COCO test数据集精度达到49.5%、V100预测速度达到68.9 FPS
 * 目标检测任务新增4.2MB的超轻量级模型[PP-YOLO tiny](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/object_detection/ppyolotiny.py)
 * 语义分割任务新增实时分割模型[BiSeNetV2](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/semantic_segmentation/bisenetv2.py)
 * C++部署模块全面升级
@@ -57,7 +57,7 @@ PaddleX 3.0beta 集成了飞桨生态的优势能力,覆盖 7 大场景任务
 ### PaddleX v1.3.0(12.19/2020)
 
 - 模型更新
-  > - 图像分类模型ResNet50_vd新增10万分类预训练模型 
+  > - 图像分类模型ResNet50_vd新增10万分类预训练模型
   > - 目标检测模型FasterRCNN新增模型裁剪支持
   > - 目标检测模型新增多通道图像训练支持
 
@@ -125,5 +125,3 @@ PaddleX 3.0beta 集成了飞桨生态的优势能力,覆盖 7 大场景任务
 - **易用易集成**
   - 统一易用的全流程API,5步完成模型训练,10行代码实现Python/C++高性能部署。
   - 提供以PaddleX为核心集成的跨平台可视化工具PaddleX-GUI,快速体验飞桨深度学习全流程。
-
-

+ 1 - 1
docs/tutorials/data/annotation/OCRAnnoTools.md

@@ -1,5 +1,5 @@
 # 数据标注指南
-本文档将介绍如何使用 [PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/PPOCRLabel/README_ch.md) 完成 PP-OCR 单模型和表格识别的数据标注。 
+本文档将介绍如何使用 [PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/PPOCRLabel/README_ch.md) 完成 PP-OCR 单模型和表格识别的数据标注。
 
 点击上述链接,参考首页文档即可安装数据标注工具并查看详细使用流程,以下提供简洁版本说明:
 

+ 2 - 2
docs/tutorials/data/dataset_check.md

@@ -129,7 +129,7 @@ python main.py -c paddlex/configs/object_detection/PicoDet-S.yaml \
   "dataset_path": "./dataset/det_coco_examples",
   "show_type": "image",
   "dataset_type": "COCODetDataset"
-}  
+}
 ```
 上述校验结果中,check_pass 为 True 表示数据集格式符合要求,其他部分指标的说明如下:
 
@@ -493,7 +493,7 @@ tar -xf ./dataset/ocr_rec_latexocr_dataset_example.tar -C ./dataset/
 ```bash
 python main.py -c paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml \
     -o Global.mode=check_dataset \
-    -o Global.dataset_dir=./dataset/ocr_rec_latexocr_dataset_example 
+    -o Global.dataset_dir=./dataset/ocr_rec_latexocr_dataset_example
 ```
 
 执行上述命令后,PaddleX 会对数据集进行校验,并统计数据集的基本信息。命令运行成功后会在log中打印出 `Check dataset passed !` 信息,同时相关产出会保存在当前目录的 `./output/check_dataset` 目录下,产出目录中包括可视化的示例样本图片和样本分布直方图。校验结果文件保存在 `./output/check_dataset_result.json`,校验结果文件具体内容为

+ 3 - 3
docs/tutorials/data/dataset_format.md

@@ -27,13 +27,13 @@ dataset_dir    # 数据集根目录,目录名称可以改变
 如果您已有数据集且数据集格式为如下格式,但是没有标注文件,可以使用[脚本](https://paddleclas.bj.bcebos.com/tools/create_cls_trainval_lists.py)将已有的数据集生成标注文件。
 
 ```plain
-dataset_dir          # 数据集根目录,目录名称可以改变  
+dataset_dir          # 数据集根目录,目录名称可以改变
 ├── images           # 图像的保存目录,目录名称可以改变
    ├── train         # 训练集目录,目录名称可以改变
       ├── class0     # 类名字,最好是有意义的名字,否则生成的类别映射文件label.txt无意义
          ├── xxx.jpg # 图片,此处支持层级嵌套
          ├── xxx.jpg # 图片,此处支持层级嵌套
-         ...  
+         ...
       ├── class1     # 类名字,最好是有意义的名字,否则生成的类别映射文件label.txt无意义
       ...
    ├── val           # 验证集目录,目录名称可以改变
@@ -201,7 +201,7 @@ dataset_dir    # 数据集根目录,目录名称可以改变
 PaddleX 针对长时序预测任务定义的数据集,名称是**TSDataset**,组织结构和标注格式如下。
 
 ```plain
-dataset_dir         # 数据集根目录,目录名称可以改变  
+dataset_dir         # 数据集根目录,目录名称可以改变
 ├── train.csv       # 训练集标注文件,文件名称不可改变。表头是每列的列名称,每一行是某一个时间点采集的数据。
 ├── val.csv         # 验证集标注文件,文件名称不可改变。表头是每列的列名称,每一行是某一个时间点采集的数据。
 └── test.csv        # 测试集标注文件(可选),文件名称不可改变。表头是每列的列名称,每一行是某一个时间点采集的数据。

+ 1 - 1
docs/tutorials/pipelines/pipeline_develop_tools.md

@@ -25,7 +25,7 @@ PaddleX 提供了丰富的模型产线,模型产线由一个或多个模型组
     ```
     **注:** 通用 OCR 产线是一个多模型串联的产线,包含文本检测模型(如 `PP-OCRv4_mobile_det`)和文本识别模型(如 `PP-OCRv4_mobile_rec`),因此需要指定两个模型进行体验。
   - 星河社区体验方式:前往[AI Studio 星河社区](https://aistudio.baidu.com/pipeline/mine),点击【创建产线】,创建**通用 OCR** 产线进行快速体验;
-- 3.【**选择模型**】(可选)当体验完该产线之后,需要确定产线是否符合预期(包含精度、速度等),产线包含的模型是否需要继续微调,如果模型的速度或者精度不符合预期,则需要根据[模型选择](./model_select.md)选择可替换的模型继续测试,确定效果是否满意。如果最终效果均不满意,则需要微调模型。在确定微调的模型时,需要根据测试的情况确定微调其中的哪个模型,如发现文字的定位不准,则需要微调文本检测模型,如果发现文字的识别不准,则需要微调文本识别模型。  
+- 3.【**选择模型**】(可选)当体验完该产线之后,需要确定产线是否符合预期(包含精度、速度等),产线包含的模型是否需要继续微调,如果模型的速度或者精度不符合预期,则需要根据[模型选择](./model_select.md)选择可替换的模型继续测试,确定效果是否满意。如果最终效果均不满意,则需要微调模型。在确定微调的模型时,需要根据测试的情况确定微调其中的哪个模型,如发现文字的定位不准,则需要微调文本检测模型,如果发现文字的识别不准,则需要微调文本识别模型。
 - 4.【**模型微调**】(可选)在第 3 步选择好对应的模型后,即可使用**单模型开发工具**以低代码的方式进行模型微调训练和优化,如此处需要优化文本识别模型(`PP-OCRv4_mobile_rec`),则只需要完成【数据校验】和【模型训练】,二者命令如下:
 
   ```bash

+ 1 - 1
docs/tutorials/pipelines/pipeline_inference.md

@@ -44,7 +44,7 @@ result = pipeline.predict(
         {'input_path': "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"}
     )
 print(result["cls_result"])
-```  
+```
 
 
 ### 2.2 通用目标检测产线

+ 1 - 1
docs/tutorials/pipelines/pipeline_inference_api.md

@@ -20,7 +20,7 @@ result = pipeline.predict(
         {'input_path': "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"}
     )
 print(result["cls_result"])
-```  
+```
 
 如上代码所示,具体来说需要简单几步:1. 实例化 `PaddleInferenceOption` 进行推理相关设置;2. 实例化模型产线对象;3. 调用模型产线对象的 `predict` 方法进行推理预测。
 

+ 2 - 2
docs/tutorials/practical_tutorial/image_classification_garbage_tutorial.md

@@ -160,7 +160,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -250,7 +250,7 @@ result = pipeline.predict(
     )
 
 print(result["cls_result"])
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 2 - 2
docs/tutorials/practical_tutorial/instance_segmentation_remote_sensing_tutorial.md

@@ -155,7 +155,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -246,7 +246,7 @@ result = pipeline.predict(
     )
 
 print(result["boxes"])
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 3 - 3
docs/tutorials/practical_tutorial/object_detection_fall_tutorial.md

@@ -92,7 +92,7 @@ python main.py -c paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml \
   "dataset_path": "./dataset/fall_det",
   "show_type": "image",
   "dataset_type": "COCODetDataset"
-}  
+}
 ```
 上述校验结果中,check_pass 为 True 表示数据集格式符合要求,其他部分指标的说明如下:
 
@@ -159,7 +159,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -249,7 +249,7 @@ result = pipeline.predict(
     )
 
 print(result["boxes"])
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 3 - 3
docs/tutorials/practical_tutorial/object_detection_fashion_pedia_tutorial.md

@@ -92,7 +92,7 @@ python main.py -c paddlex/configs/object_detection/PicoDet-L.yaml \
   "dataset_path": "./dataset/det_mini_fashion_pedia_coco",
   "show_type": "image",
   "dataset_type": "COCODetDataset"
-}  
+}
 ```
 上述校验结果中,check_pass 为 True 表示数据集格式符合要求,其他部分指标的说明如下:
 
@@ -159,7 +159,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -250,7 +250,7 @@ result = pipeline.predict(
     )
 
 print(result["boxes"])
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 12 - 12
docs/tutorials/practical_tutorial/ocr_det_license_tutorial.md

@@ -35,8 +35,8 @@ PaddleX 提供了 2 个端到端的文本检测模型,具体可参考 [模型
 
 | 模型列表         | 检测Hmean(%) | 识别 Avg Accuracy(%) | GPU 推理耗时(ms) | CPU 推理耗时(ms) | 模型存储大小(M) |
 | --------------- | ----------- | ------------------- | --------------- | --------------- |---------------|
-| PP-OCRv4_server	| 82.69       | 79.20               | 	22.20346	    | 2662.158        | 	        198 |
-| PP-OCRv4_mobile	| 77.79       | 78.20	              | 2.719474	      | 79.1097         | 	         15 |
+| PP-OCRv4_server   | 82.69       | 79.20               |   22.20346        | 2662.158        |             198 |
+| PP-OCRv4_mobile   | 77.79       | 78.20                 | 2.719474          | 79.1097         |            15 |
 
 **注:以上精度指标为 PaddleOCR 自建中文数据集验证集 检测Hmean 和 识别 Avg Accuracy,GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为 8,精度类型为 FP32。**
 简单来说,表格从上到下,模型推理速度更快,从下到上,模型精度更高。本教程以 `PP-OCRv4_server` 模型为例,完成一次模型全流程开发。你可以依据自己的实际使用场景,判断并选择一个合适的模型做训练,训练完成后可在产线内评估合适的模型权重,并最终用于实际使用场景中。
@@ -164,7 +164,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -200,21 +200,21 @@ python main.py -c paddlex/configs/text_detection/PP-OCRv4_server_det.yaml \
 学习率探寻实验结果:
 <center>
 
-| 实验ID | 学习率	 | 检测Hmean(%)|
+| 实验ID | 学习率   | 检测Hmean(%)|
 |-----------|-----|-------|
-|1	 | 0.00005 | 	99.06|
-|2	 | 0.0001 | 	99.55|
-|3	 | 0.0005	 | 99.60|
-|4	 | 0.001	 | 99.70|
+|1   | 0.00005 |    99.06|
+|2   | 0.0001 |     99.55|
+|3   | 0.0005    | 99.60|
+|4   | 0.001     | 99.70|
 </center>
 
 接下来,我们可以在学习率设置为 0.001 的基础上,增加训练轮次,对比下面实验 [4,5] 可知,训练轮次增大,模型精度有了进一步的提升。
 <center>
 
-| 实验ID | 	训练轮次	 | 检测 Hmean(%) |
+| 实验ID |    训练轮次     | 检测 Hmean(%) |
 |-----------|-----|-------|
-| 4	 | 10 | 	99.70   |
-| 5	 | 20	 | 99.80   |
+| 4  | 10 |     99.70   |
+| 5  | 20    | 99.80   |
 </center>
 
 **注:本教程为 4 卡教程,如果您只有 1 张 GPU,可通过调整训练卡数完成本次实验,但最终指标未必和上述指标对齐,属正常情况。**
@@ -256,7 +256,7 @@ result = pipeline.predict(
     )
 
 print(result["dt_polys"])
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 14 - 14
docs/tutorials/practical_tutorial/ocr_rec_chinese_tutorial.md

@@ -35,8 +35,8 @@ PaddleX 提供了 2 个端到端的OCR模型,具体可参考 [模型列表](..
 
 | 模型列表         | 检测Hmean(%) | 识别 Avg Accuracy(%) | GPU 推理耗时(ms) | CPU 推理耗时(ms) | 模型存储大小(M) |
 | --------------- | ----------- | ------------------- | --------------- | --------------- |---------------|
-|PP-OCRv4_server | 	82.69	 | 79.20	 | 22.20346	 | 2662.158	 | 198|
-|PP-OCRv4_mobile	 | 77.79	 | 78.20 | 	2.719474 | 	79.1097	 | 15|
+|PP-OCRv4_server |  82.69    | 79.20     | 22.20346  | 2662.158  | 198|
+|PP-OCRv4_mobile     | 77.79     | 78.20 |  2.719474 |  79.1097  | 15|
 
 **注:评估集是 PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中文本识别包含1.1w张图片,检测包含500张图片。GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为 8,精度类型为 FP32**
 简单来说,表格从上到下,模型推理速度更快,从下到上,模型精度更高。本教程以 `PP-OCRv4_server` 模型为例,完成一次模型全流程开发。你可以依据自己的实际使用场景,判断并选择一个合适的模型做训练,训练完成后可在产线内评估合适的模型权重,并最终用于实际使用场景中。
@@ -164,7 +164,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -200,23 +200,23 @@ python main.py -c paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml \
 学习率探寻实验结果:
 <center>
 
-| 实验ID | 学习率	 | 识别 Acc (%)|
+| 实验ID | 学习率   | 识别 Acc (%)|
 |-----------|-----|-------|
-|1 |	0.001 |		43.28|
-|2	 |	0.005 |		32.63|
-|3	 |	0.0002 |		49.64|
-|4	 |	0.0001 |		46.32|
+|1 |    0.001 |     43.28|
+|2   |  0.005 |     32.63|
+|3   |  0.0002 |        49.64|
+|4   |  0.0001 |        46.32|
 </center>
 
 接下来,我们可以在学习率设置为 0.0002 的基础上,增加训练轮次,对比下面实验 [4, 5, 6, 7] 可知,训练轮次增大,模型精度有了进一步的提升。
 <center>
 
-| 实验ID | 	训练轮次	 | 识别 Acc (%) |
+| 实验ID |    训练轮次     | 识别 Acc (%) |
 |-----------|-----|-------|
-| 4 |		20	 |	49.64|
-| 5	 |	30	 |	52.03|
-| 6 |		50 |		54.15|
-| 7	 |	80	 |	54.35|
+| 4 |       20   |  49.64|
+| 5  |  30   |  52.03|
+| 6 |       50 |        54.15|
+| 7  |  80   |  54.35|
 </center>
 
 **注:本教程为 4 卡教程,如果您只有 1 张 GPU,可通过调整训练卡数完成本次实验,但最终指标未必和上述指标对齐,属正常情况。**
@@ -259,7 +259,7 @@ result = pipeline.predict(
 
 print(result["rec_text"])
 
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 3 - 3
docs/tutorials/practical_tutorial/semantic_segmentation_road_tutorial.md

@@ -88,7 +88,7 @@ python main.py -c paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml \
   "dataset_path": "./dataset/semantic-segmentation-makassaridn-road-dataset",
   "show_type": "image",
   "dataset_type": "COCODetDataset"
-}  
+}
 ```
 上述校验结果中,check_pass 为 True 表示数据集格式符合要求,其他部分指标的说明如下:
 
@@ -155,7 +155,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 - PaddleX 对您屏蔽了动态图权重和静态图权重的概念。在模型训练的过程中,会同时产出动态图和静态图的权重,在模型推理时,默认选择静态图权重推理。
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -246,7 +246,7 @@ result = pipeline.predict(
     )
 
 print(result.keys())
-```  
+```
 2. PaddleX也提供了基于 FastDeploy 的高性能推理/服务化部署的方式进行模型部署。该部署方案支持更多的推理后端,并且提供高性能推理和服务化部署两种部署方式,能够满足更多场景的需求,具体流程可参考 [基于 FastDeploy 的模型产线部署]((../pipelines/pipeline_deployment_with_fastdeploy.md))。高性能推理和服务化部署两种部署方式的特点如下:
     * 高性能推理:运行脚本执行推理,或在程序中调用 Python/C++ 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。
     * 服务化部署:采用 C/S 架构,以服务形式提供推理能力,客户端可以通过网络请求访问服务,以获取推理结果。

+ 8 - 8
docs/tutorials/practical_tutorial/ts_anomaly_detection.md

@@ -33,11 +33,11 @@ PaddleX 提供了5个端到端的时序异常检测模型,具体可参考 [模
 
 | 模型列表          | precision | recall | f1_score | 模型存储大小 |
 |:--------------|:---------:|:------:|:--------:|:---------:|
-| DLinear_ad	      |  0.904	   | 0.891  |  0.897   |   0.9M    |
-| Nonstationary_ad |  0.901	   | 0.938	 |  0.918   |  19.1MB   |
-| AutoEncoder_ad	  |  0.897	   | 0.860	 |  0.876   |   0.4M    |
-| PatchTST_ad	     |  0.900	   | 0.925	 |  0.913   |   2.1M    |
-| TimesNet_ad	     |  0.899	   | 0.935	 |  0.917   |   5.4M    |
+| DLinear_ad          |  0.904     | 0.891  |  0.897   |   0.9M    |
+| Nonstationary_ad |  0.901    | 0.938   |  0.918   |  19.1MB   |
+| AutoEncoder_ad      |  0.897     | 0.860   |  0.876   |   0.4M    |
+| PatchTST_ad        |  0.900      | 0.925   |  0.913   |   2.1M    |
+| TimesNet_ad        |  0.899      | 0.935   |  0.917   |   5.4M    |
 
 </center>
 
@@ -149,7 +149,7 @@ python main.py -c paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml \
     -o Train.feature_cols=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 \
     -o Train.freq=1 \
     -o Train.label_col=label \
-    -o Train.seq_len=96 
+    -o Train.seq_len=96
 ```
 
 在 PaddleX 中模型训练支持:修改训练超参数、单机单卡训练(时序模型仅支持单卡训练)等功能,只需修改配置文件或追加命令行参数。
@@ -177,7 +177,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -249,7 +249,7 @@ python main.py -c paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml \
 
 
 ## 7. 部署
- 
+
 PaddleX 针对时序分析模型提供了 本地推理部署/服务化部署的方式进行模型部署。目前时序部署方案为动态图部署,提供本地推理和服务化部署两种部署方式,能够满足更多场景的需求。本地部署和服务化部署两种部署方式的特点如下:
 
     * 本地部署:运行脚本执行推理,或在程序中调用 Python 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。

+ 5 - 5
docs/tutorials/practical_tutorial/ts_classification.md

@@ -33,7 +33,7 @@ PaddleX 提供了1个端到端的时序分类模型,具体可参考 [模型列
 
 | 模型列表          | acc(%) | 模型存储大小(M) |
 |:--------------|:------:|:---------:|
-| TimesNet_cls	 | 87.5	  |   5.3M    |
+| TimesNet_cls   | 87.5   |   5.3M    |
 </center>
 
 > **注:以上精度指标测量自 <a href="https://www.timeseriesclassification.com/index.php">UEA/UWaveGestureLibrary</a> 数据集。**
@@ -60,7 +60,7 @@ tar -xf ./dataset/ts_classify_examples.tar -C ./dataset/
   - 时间频率一致:确保所有数据序列的时间频率一致,如每小时、每日或每周,对于不一致的时间序列,可以通过重采样方法调整到统一的时间频率。
 
   - 时间序列长度一致:确保每一个group的时间序列的长度一致。
-  
+
   - 缺失值处理:为了保证数据的质量和完整性,可以基于专家经验或统计方法进行缺失值填充。
 
   - 非重复性:保证数据是安装时间顺序按行收集的,同一个时间点不能重复出现。
@@ -144,7 +144,7 @@ python main.py -c paddlex/configs/ts_classification/TimesNet_cls.yaml \
     -o Train.target_cols=dim_0,dim_1,dim_2 \
     -o Train.freq=1 \
     -o Train.group_id=group_id \
-    -o Train.static_cov_cols=label 
+    -o Train.static_cov_cols=label
 ```
 
 在 PaddleX 中模型训练支持:修改训练超参数、单机单卡训练(时序模型仅支持单卡训练)等功能,只需修改配置文件或追加命令行参数。
@@ -172,7 +172,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -243,7 +243,7 @@ python main.py -c paddlex/configs/ts_classification/TimesNet_cls.yaml \
 
 
 ## 7. 开发集成/部署
- 
+
 PaddleX 针对时序分析模型也提供了 本地推理部署/服务化部署的方式进行模型部署。目前时序部署方案为动态图部署,提供本地推理和服务化部署两种部署方式,能够满足更多场景的需求。本地部署和服务化部署两种部署方式的特点如下:
 
     * 本地部署:运行脚本执行推理,或在程序中调用 Python 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。

+ 8 - 8
docs/tutorials/practical_tutorial/ts_forecast.md

@@ -33,11 +33,11 @@ PaddleX 提供了5个端到端的时序预测模型,具体可参考 [模型列
 
 | 模型列表        |  mse   |  mae   | 模型存储大小 |
 |:----------------|:------:|:------:|:--------------:|
-| DLinear	       | 0.386	 | 0.445  | 80k       |
-| Nonstationary   | 0.385	 | 0.463	 | 61M       |
-| TiDE	           | 0.376	 | 0.441	 | 35M       |
-| PatchTST	       | 0.291	 | 0.380	 | 2.2M      |
-| TimesNet	       | 0.284	 | 0.386	 | 5.2M      |
+| DLinear          | 0.386   | 0.445  | 80k       |
+| Nonstationary   | 0.385    | 0.463     | 61M       |
+| TiDE             | 0.376   | 0.441     | 35M       |
+| PatchTST         | 0.291   | 0.380     | 2.2M      |
+| TimesNet         | 0.284   | 0.386     | 5.2M      |
 </center>
 
 > **注:以上精度指标测量自 <a href="https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014">ECL</a> 数据集,输入输出长度均为 96。**
@@ -185,7 +185,7 @@ python main.py -c paddlex/configs/ts_forecast/DLinear.yaml \
   "dataset_path": "./dataset/electricity",
   "show_type": "csv",
   "dataset_type": "TSDataset"
-} 
+}
 ```
 上述校验结果中,check_pass 为 True 表示数据集格式符合要求,其他部分指标的说明如下:
 
@@ -259,7 +259,7 @@ PaddleX 中每个模型都提供了模型开发的配置文件,用于设置相
 - 模型训练过程中,PaddleX 会自动保存模型权重文件,默认为`output`,如需指定保存路径,可通过配置文件中 `-o Global.output` 字段
 
 
-**训练产出解释:**  
+**训练产出解释:**
 
 在完成模型训练后,所有产出保存在指定的输出目录(默认为`./output/`)下,通常有以下产出:
 
@@ -343,7 +343,7 @@ python main.py -c paddlex/configs/ts_forecast/DLinear.yaml \
 
 
 ## 7. 部署
- 
+
 PaddleX 针对时序分析模型提供了 本地推理部署/服务化部署的方式进行模型部署。目前时序部署方案为动态图部署,提供本地推理和服务化部署两种部署方式,能够满足更多场景的需求。本地部署和服务化部署两种部署方式的特点如下:
 
     * 本地部署:运行脚本执行推理,或在程序中调用 Python 的推理 API。旨在实现测试样本的高效输入与模型预测结果的快速获取,特别适用于大规模批量刷库的场景,显著提升数据处理效率。

+ 16 - 14
install_pdx.py

@@ -1,5 +1,5 @@
 # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
-# 
+#
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
@@ -17,23 +17,24 @@ import os
 import argparse
 from paddlex.repo_manager import setup, get_all_supported_repo_names
 
-if __name__ == '__main__':
+if __name__ == "__main__":
     # Enable debug info
-    os.environ['PADDLE_PDX_DEBUG'] = 'True'
+    os.environ["PADDLE_PDX_DEBUG"] = "True"
     # Disable eager initialization
-    os.environ['PADDLE_PDX_EAGER_INIT'] = 'False'
+    os.environ["PADDLE_PDX_EAGER_INIT"] = "False"
 
     parser = argparse.ArgumentParser()
-    parser.add_argument('devkits', nargs='*', default=[])
-    parser.add_argument('--no_deps', action='store_true')
-    parser.add_argument('--platform', type=str, default='github.com')
-    parser.add_argument('--update_repos', action='store_true')
+    parser.add_argument("devkits", nargs="*", default=[])
+    parser.add_argument("--no_deps", action="store_true")
+    parser.add_argument("--platform", type=str, default="github.com")
+    parser.add_argument("--update_repos", action="store_true")
     parser.add_argument(
-        '-y',
-        '--yes',
-        dest='reinstall',
-        action='store_true',
-        help="Whether to reinstall all packages.")
+        "-y",
+        "--yes",
+        dest="reinstall",
+        action="store_true",
+        help="Whether to reinstall all packages.",
+    )
     args = parser.parse_args()
 
     repo_names = args.devkits
@@ -44,4 +45,5 @@ if __name__ == '__main__':
         reinstall=args.reinstall or None,
         no_deps=args.no_deps,
         platform=args.platform,
-        update_repos=args.update_repos)
+        update_repos=args.update_repos,
+    )

+ 1 - 1
main.py

@@ -1,5 +1,5 @@
 # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
-# 
+#
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at

+ 16 - 11
paddlex/__init__.py

@@ -1,5 +1,5 @@
 # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
-# 
+#
 # Licensed under the Apache License, Version 2.0 (the "License");
 # you may not use this file except in compliance with the License.
 # You may obtain a copy of the License at
@@ -13,11 +13,15 @@
 # limitations under the License.
 
 
-
 import os
 
 from . import version
-from .modules import build_dataset_checker, build_trainer, build_evaluater, build_predictor
+from .modules import (
+    build_dataset_checker,
+    build_trainer,
+    build_evaluater,
+    build_predictor,
+)
 from .modules import create_model, PaddleInferenceOption
 from .pipelines import *
 
@@ -30,7 +34,8 @@ def _initialize():
 
     __DIR__ = os.path.abspath(os.path.dirname(os.path.abspath(__file__)))
     repo_manager.set_parent_dirs(
-        os.path.join(__DIR__, 'repo_manager', 'repos'), repo_apis)
+        os.path.join(__DIR__, "repo_manager", "repos"), repo_apis
+    )
 
     setup_logging()
 
@@ -39,16 +44,16 @@ def _initialize():
 
 
 def _check_paddle_version():
-    """check paddle version
-    """
+    """check paddle version"""
     import paddle
-    supported_versions = ['3.0', '0.0']
-    device_type = paddle.device.get_device().split(':')[0]
-    if device_type.lower() == 'xpu':
-        supported_versions.append('2.6')
+
+    supported_versions = ["3.0", "0.0"]
+    device_type = paddle.device.get_device().split(":")[0]
+    if device_type.lower() == "xpu":
+        supported_versions.append("2.6")
     version = paddle.__version__
     # Recognizable version number: major.minor.patch
-    major, minor, patch = version.split('.')
+    major, minor, patch = version.split(".")
     # Ignore patch
     version = f"{major}.{minor}"
     if version not in supported_versions:

+ 1 - 1
paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_formula_rec_001.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV2_x0_25.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV2_x0_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV2_x1_0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV2_x1_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV2_x2_0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-HGNetV2-B0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-HGNetV2-B4.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-HGNetV2-B6.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-HGNet_small.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x0_35.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x0_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x0_75.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x1_0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x1_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x2_0.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/PP-LCNet_x2_5.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/ResNet101.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/ResNet152.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/ResNet34.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/image_classification/ResNet50.yaml

@@ -38,4 +38,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_instance_segmentation_004.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_instance_segmentation_004.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/PicoDet-L.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/PicoDet-S.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/RT-DETR-H.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/RT-DETR-L.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/RT-DETR-R18.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/RT-DETR-R50.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/RT-DETR-X.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOX-L.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOX-M.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOX-N.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOX-S.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOX-T.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOX-X.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SeaFormer_base.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SeaFormer_large.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SeaFormer_small.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SegFormer-B0.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SegFormer-B1.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SegFormer-B2.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SegFormer-B3.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SegFormer-B4.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/semantic_segmentation/SegFormer-B5.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "/paddle/dataset/paddlex/layout/det_layout_examples/images/JPEGImages/train_0001.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/table_recognition/SLANet.yaml

@@ -36,4 +36,4 @@ Predict:
   input_path: "/paddle/dataset/paddlex/table_rec/table_rec_dataset_examples/images/border_10368_GBUAFQNHRKR5FUQ6ZE50.jpg"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_001.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/text_detection/PP-OCRv4_server_det.yaml

@@ -37,4 +37,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_001.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml

@@ -36,4 +36,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml

@@ -36,4 +36,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

+ 1 - 1
paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml

@@ -36,4 +36,4 @@ Predict:
   input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_rec_001.png"
   kernel_option:
     run_mode: paddle
-    batch_size: 1
+    batch_size: 1

Niektoré súbory nie sú zobrazené, pretože je v týchto rozdielových dátach zmenené mnoho súborov