|
|
@@ -0,0 +1,56 @@
|
|
|
+import os
|
|
|
+# 选择使用0号卡
|
|
|
+os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
+
|
|
|
+import paddle.fluid as fluid
|
|
|
+from paddlex.cls import transforms
|
|
|
+import paddlex as pdx
|
|
|
+
|
|
|
+# 下载和解压蔬菜分类数据集
|
|
|
+veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
|
|
|
+pdx.utils.download_and_decompress(veg_dataset, path='./')
|
|
|
+
|
|
|
+# 定义训练和验证时的transforms
|
|
|
+# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/cls_transforms.html#composedclstransforms
|
|
|
+train_transforms = transforms.ComposedClsTransforms(mode='train', crop_size=[224, 224])
|
|
|
+eval_transforms = transforms.ComposedClsTransforms(mode='eval', crop_size=[224, 224])
|
|
|
+
|
|
|
+# 定义训练和验证所用的数据集
|
|
|
+# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/classification.html#imagenet
|
|
|
+train_dataset = pdx.datasets.ImageNet(
|
|
|
+ data_dir='vegetables_cls',
|
|
|
+ file_list='vegetables_cls/train_list.txt',
|
|
|
+ label_list='vegetables_cls/labels.txt',
|
|
|
+ transforms=train_transforms,
|
|
|
+ shuffle=True)
|
|
|
+eval_dataset = pdx.datasets.ImageNet(
|
|
|
+ data_dir='vegetables_cls',
|
|
|
+ file_list='vegetables_cls/val_list.txt',
|
|
|
+ label_list='vegetables_cls/labels.txt',
|
|
|
+ transforms=eval_transforms)
|
|
|
+
|
|
|
+# PaddleX支持自定义构建优化器
|
|
|
+step_each_epoch = train_dataset.num_samples // 32
|
|
|
+learning_rate = fluid.layers.cosine_decay(
|
|
|
+ learning_rate=0.025, step_each_epoch=step_each_epoch, epochs=10)
|
|
|
+optimizer = fluid.optimizer.Momentum(
|
|
|
+ learning_rate=learning_rate,
|
|
|
+ momentum=0.9,
|
|
|
+ regularization=fluid.regularizer.L2Decay(4e-5))
|
|
|
+
|
|
|
+# 初始化模型,并进行训练
|
|
|
+# 可使用VisualDL查看训练指标
|
|
|
+# VisualDL启动方式: visualdl --logdir output/resnet50/vdl_log --port 8001
|
|
|
+# 浏览器打开 https://0.0.0.0:8001即可
|
|
|
+# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
|
|
|
+
|
|
|
+# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#resnet50
|
|
|
+model = pdx.cls.ResNet50(num_classes=len(train_dataset.labels))
|
|
|
+model.train(
|
|
|
+ num_epochs=10,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=32,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ optimizer=optimizer,
|
|
|
+ save_dir='output/resnet50',
|
|
|
+ use_vdl=True)
|