|
|
@@ -12,6 +12,7 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
|
|
|
+import numpy as np
|
|
|
from ....utils import logging
|
|
|
from ....utils.func_register import FuncRegister
|
|
|
from ....modules.formula_recognition.model_list import MODELS
|
|
|
@@ -38,6 +39,7 @@ from .result import FormulaRecResult
|
|
|
|
|
|
|
|
|
class FormulaRecPredictor(BasicPredictor):
|
|
|
+ """FormulaRecPredictor that inherits from BasicPredictor."""
|
|
|
|
|
|
entities = MODELS
|
|
|
|
|
|
@@ -45,7 +47,23 @@ class FormulaRecPredictor(BasicPredictor):
|
|
|
register = FuncRegister(_FUNC_MAP)
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
+ """Initializes FormulaRecPredictor.
|
|
|
+ Args:
|
|
|
+ *args: Arbitrary positional arguments passed to the superclass.
|
|
|
+ **kwargs: Arbitrary keyword arguments passed to the superclass.
|
|
|
+ """
|
|
|
super().__init__(*args, **kwargs)
|
|
|
+
|
|
|
+ self.model_names_only_supports_batchsize_of_one = {
|
|
|
+ "LaTeX_OCR_rec",
|
|
|
+ }
|
|
|
+ if self.model_name in self.model_names_only_supports_batchsize_of_one:
|
|
|
+ logging.warning(
|
|
|
+ f"Formula Recognition Models: \"{', '.join(list(self.model_names_only_supports_batchsize_of_one))}\" only supports prediction with a batch_size of one, "
|
|
|
+ "if you set the predictor with a batch_size larger than one, no error will occur, however, it will actually inference with a batch_size of one, "
|
|
|
+ f"which will lead to a slower inference speed. You are now using {self.config['Global']['model_name']}."
|
|
|
+ )
|
|
|
+
|
|
|
self.pre_tfs, self.infer, self.post_op = self._build()
|
|
|
|
|
|
def _build_batch_sampler(self):
|
|
|
@@ -91,9 +109,25 @@ class FormulaRecPredictor(BasicPredictor):
|
|
|
batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
|
|
|
batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
|
|
|
|
|
|
- x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
|
|
|
- batch_preds = self.infer(x=x)
|
|
|
- batch_preds = [p.reshape([-1]) for p in batch_preds[0]]
|
|
|
+ if self.model_name in self.model_names_only_supports_batchsize_of_one:
|
|
|
+ batch_preds = []
|
|
|
+ max_length = 0
|
|
|
+ for batch_img in batch_imgs:
|
|
|
+ batch_pred_ = self.infer([batch_img])[0].reshape([-1])
|
|
|
+ max_length = max(max_length, batch_pred_.shape[0])
|
|
|
+ batch_preds.append(batch_pred_)
|
|
|
+ for i in range(len(batch_preds)):
|
|
|
+ batch_preds[i] = np.pad(
|
|
|
+ batch_preds[i],
|
|
|
+ (0, max_length - batch_preds[i].shape[0]),
|
|
|
+ mode="constant",
|
|
|
+ constant_values=0,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
|
|
|
+ batch_preds = self.infer(x=x)
|
|
|
+ batch_preds = [p.reshape([-1]) for p in batch_preds[0]]
|
|
|
+
|
|
|
rec_formula = self.post_op(batch_preds)
|
|
|
return {
|
|
|
"input_path": batch_data.input_paths,
|