|
|
@@ -0,0 +1,177 @@
|
|
|
+import copy
|
|
|
+import os
|
|
|
+from argparse import ArgumentParser
|
|
|
+from multiprocessing import Pool
|
|
|
+
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+import numpy as np
|
|
|
+from pycocotools.coco import COCO
|
|
|
+from pycocotools.cocoeval import COCOeval
|
|
|
+
|
|
|
+
|
|
|
+def makeplot(rs, ps, outDir, class_name, iou_type):
|
|
|
+ cs = np.vstack([
|
|
|
+ np.ones((2, 3)), np.array([.31, .51, .74]), np.array([.75, .31, .30]),
|
|
|
+ np.array([.36, .90, .38]), np.array([.50, .39, .64]),
|
|
|
+ np.array([1, .6, 0])
|
|
|
+ ])
|
|
|
+ areaNames = ['allarea', 'small', 'medium', 'large']
|
|
|
+ types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
|
|
|
+ for i in range(len(areaNames)):
|
|
|
+ area_ps = ps[..., i, 0]
|
|
|
+ figure_tile = iou_type + '-' + class_name + '-' + areaNames[i]
|
|
|
+ aps = [ps_.mean() for ps_ in area_ps]
|
|
|
+ ps_curve = [
|
|
|
+ ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps
|
|
|
+ ]
|
|
|
+ ps_curve.insert(0, np.zeros(ps_curve[0].shape))
|
|
|
+ fig = plt.figure()
|
|
|
+ ax = plt.subplot(111)
|
|
|
+ for k in range(len(types)):
|
|
|
+ ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5)
|
|
|
+ ax.fill_between(
|
|
|
+ rs,
|
|
|
+ ps_curve[k],
|
|
|
+ ps_curve[k + 1],
|
|
|
+ color=cs[k],
|
|
|
+ label=str('[{:.3f}'.format(aps[k]) + ']' + types[k]))
|
|
|
+ plt.xlabel('recall')
|
|
|
+ plt.ylabel('precision')
|
|
|
+ plt.xlim(0, 1.)
|
|
|
+ plt.ylim(0, 1.)
|
|
|
+ plt.title(figure_tile)
|
|
|
+ plt.legend()
|
|
|
+ # plt.show()
|
|
|
+ fig.savefig(outDir + '/{}.png'.format(figure_tile))
|
|
|
+ plt.close(fig)
|
|
|
+
|
|
|
+
|
|
|
+def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type):
|
|
|
+ nm = cocoGt.loadCats(catId)[0]
|
|
|
+ print('--------------analyzing {}-{}---------------'.format(k + 1, nm[
|
|
|
+ 'name']))
|
|
|
+ ps_ = {}
|
|
|
+ dt = copy.deepcopy(cocoDt)
|
|
|
+ nm = cocoGt.loadCats(catId)[0]
|
|
|
+ imgIds = cocoGt.getImgIds()
|
|
|
+ dt_anns = dt.dataset['annotations']
|
|
|
+ select_dt_anns = []
|
|
|
+ for ann in dt_anns:
|
|
|
+ if ann['category_id'] == catId:
|
|
|
+ select_dt_anns.append(ann)
|
|
|
+ dt.dataset['annotations'] = select_dt_anns
|
|
|
+ dt.createIndex()
|
|
|
+ # compute precision but ignore superclass confusion
|
|
|
+ gt = copy.deepcopy(cocoGt)
|
|
|
+ child_catIds = gt.getCatIds(supNms=[nm['supercategory']])
|
|
|
+ for idx, ann in enumerate(gt.dataset['annotations']):
|
|
|
+ if (ann['category_id'] in child_catIds and
|
|
|
+ ann['category_id'] != catId):
|
|
|
+ gt.dataset['annotations'][idx]['ignore'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['iscrowd'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['category_id'] = catId
|
|
|
+ cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
|
|
|
+ cocoEval.params.imgIds = imgIds
|
|
|
+ cocoEval.params.maxDets = [100]
|
|
|
+ cocoEval.params.iouThrs = [.1]
|
|
|
+ cocoEval.params.useCats = 1
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :]
|
|
|
+ ps_['ps_supercategory'] = ps_supercategory
|
|
|
+ # compute precision but ignore any class confusion
|
|
|
+ gt = copy.deepcopy(cocoGt)
|
|
|
+ for idx, ann in enumerate(gt.dataset['annotations']):
|
|
|
+ if ann['category_id'] != catId:
|
|
|
+ gt.dataset['annotations'][idx]['ignore'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['iscrowd'] = 1
|
|
|
+ gt.dataset['annotations'][idx]['category_id'] = catId
|
|
|
+ cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
|
|
|
+ cocoEval.params.imgIds = imgIds
|
|
|
+ cocoEval.params.maxDets = [100]
|
|
|
+ cocoEval.params.iouThrs = [.1]
|
|
|
+ cocoEval.params.useCats = 1
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :]
|
|
|
+ ps_['ps_allcategory'] = ps_allcategory
|
|
|
+ return k, ps_
|
|
|
+
|
|
|
+
|
|
|
+def analyze_results(res_file, ann_file, res_types, out_dir):
|
|
|
+ for res_type in res_types:
|
|
|
+ assert res_type in ['bbox', 'segm']
|
|
|
+
|
|
|
+ directory = os.path.dirname(out_dir + '/')
|
|
|
+ if not os.path.exists(directory):
|
|
|
+ print('-------------create {}-----------------'.format(out_dir))
|
|
|
+ os.makedirs(directory)
|
|
|
+
|
|
|
+ cocoGt = COCO(ann_file)
|
|
|
+ cocoDt = cocoGt.loadRes(res_file)
|
|
|
+ imgIds = cocoGt.getImgIds()
|
|
|
+ for res_type in res_types:
|
|
|
+ res_out_dir = out_dir + '/' + res_type + '/'
|
|
|
+ res_directory = os.path.dirname(res_out_dir)
|
|
|
+ if not os.path.exists(res_directory):
|
|
|
+ print('-------------create {}-----------------'.format(
|
|
|
+ res_out_dir))
|
|
|
+ os.makedirs(res_directory)
|
|
|
+ iou_type = res_type
|
|
|
+ cocoEval = COCOeval(
|
|
|
+ copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type)
|
|
|
+ cocoEval.params.imgIds = imgIds
|
|
|
+ cocoEval.params.iouThrs = [.75, .5, .1]
|
|
|
+ cocoEval.params.maxDets = [100]
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ ps = cocoEval.eval['precision']
|
|
|
+ ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))])
|
|
|
+ catIds = cocoGt.getCatIds()
|
|
|
+ recThrs = cocoEval.params.recThrs
|
|
|
+ with Pool(processes=48) as pool:
|
|
|
+ args = [(k, cocoDt, cocoGt, catId, iou_type)
|
|
|
+ for k, catId in enumerate(catIds)]
|
|
|
+ analyze_results = pool.starmap(analyze_individual_category, args)
|
|
|
+ for k, catId in enumerate(catIds):
|
|
|
+ nm = cocoGt.loadCats(catId)[0]
|
|
|
+ print('--------------saving {}-{}---------------'.format(k + 1, nm[
|
|
|
+ 'name']))
|
|
|
+ analyze_result = analyze_results[k]
|
|
|
+ assert k == analyze_result[0]
|
|
|
+ ps_supercategory = analyze_result[1]['ps_supercategory']
|
|
|
+ ps_allcategory = analyze_result[1]['ps_allcategory']
|
|
|
+ # compute precision but ignore superclass confusion
|
|
|
+ ps[3, :, k, :, :] = ps_supercategory
|
|
|
+ # compute precision but ignore any class confusion
|
|
|
+ ps[4, :, k, :, :] = ps_allcategory
|
|
|
+ # fill in background and false negative errors and plot
|
|
|
+ #ps[ps == -1] = 0
|
|
|
+ T, _, _, A, _ = ps.shape
|
|
|
+ for t in range(T):
|
|
|
+ for a in range(A):
|
|
|
+ if np.sum(ps[t, :, k, a, :] ==
|
|
|
+ -1) != len(ps[t, :, k, :, :]):
|
|
|
+ ps[t, :, k, a, :][ps[t, :, k, a, :] == -1] = 0
|
|
|
+ ps[5, :, k, :, :] = (ps[4, :, k, :, :] > 0)
|
|
|
+ ps[6, :, k, :, :] = 1.0
|
|
|
+ makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type)
|
|
|
+ makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ parser = ArgumentParser(description='COCO Error Analysis Tool')
|
|
|
+ parser.add_argument('result', help='result file (json format) path')
|
|
|
+ parser.add_argument('out_dir', help='dir to save analyze result images')
|
|
|
+ parser.add_argument(
|
|
|
+ '--ann',
|
|
|
+ default='data/coco/annotations/instances_val2017.json',
|
|
|
+ help='annotation file path')
|
|
|
+ parser.add_argument(
|
|
|
+ '--types', type=str, nargs='+', default=['bbox'], help='result types')
|
|
|
+ args = parser.parse_args()
|
|
|
+ analyze_results(args.result, args.ann, args.types, out_dir=args.out_dir)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ main()
|