|
|
@@ -11,112 +11,142 @@ comments: true
|
|
|
|
|
|
<b>通用</b><b>语义分割</b><b>产线中包含了</b><b>语义分割</b><b>模块,如您更考虑模型精度,请选择精度较高的模型,如您更考虑模型推理速度,请选择推理速度较快的模型,如您更考虑模型存储大小,请选择存储大小较小的模型</b>。
|
|
|
|
|
|
+<table>
|
|
|
+<thead>
|
|
|
+<tr>
|
|
|
+<th>模型名称</th><th>Model Download Link</th>
|
|
|
+<th>mloU(%)</th>
|
|
|
+<th>GPU推理耗时(ms)</th>
|
|
|
+<th>CPU推理耗时 (ms)</th>
|
|
|
+<th>模型存储大小(M)</th>
|
|
|
+</tr>
|
|
|
+</thead>
|
|
|
+<tbody>
|
|
|
+<tr>
|
|
|
+<td>OCRNet_HRNet-W48</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/OCRNet_HRNet-W48_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/OCRNet_HRNet-W48_pretrained.pdparams">Trained Model</a></td>
|
|
|
+<td>82.15</td>
|
|
|
+<td>78.9976</td>
|
|
|
+<td>2226.95</td>
|
|
|
+<td>249.8 M</td>
|
|
|
+</tr>
|
|
|
+<tr>
|
|
|
+<td>PP-LiteSeg-T</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-LiteSeg-T_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-LiteSeg-T_pretrained.pdparams">Trained Model</a></td>
|
|
|
+<td>73.10</td>
|
|
|
+<td>7.6827</td>
|
|
|
+<td>138.683</td>
|
|
|
+<td>28.5 M</td>
|
|
|
+</tr>
|
|
|
+</tbody>
|
|
|
+</table>
|
|
|
+
|
|
|
+> ❗ 以上列出的是语义分割模块重点支持的<b>2个核心模型</b>,该模块总共支持<b>18个模型</b>,完整的模型列表如下:
|
|
|
+
|
|
|
<details><summary> 👉模型列表详情</summary>
|
|
|
|
|
|
<table>
|
|
|
<thead>
|
|
|
<tr>
|
|
|
-<th>模型</th><th>模型下载链接</th>
|
|
|
+<th>模型名称</th><th>Model Download Link</th>
|
|
|
<th>mloU(%)</th>
|
|
|
<th>GPU推理耗时(ms)</th>
|
|
|
-<th>CPU推理耗时(ms)</th>
|
|
|
+<th>CPU推理耗时 (ms)</th>
|
|
|
<th>模型存储大小(M)</th>
|
|
|
</tr>
|
|
|
</thead>
|
|
|
<tbody>
|
|
|
<tr>
|
|
|
-<td>Deeplabv3_Plus-R50</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3_Plus-R50_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3_Plus-R50_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>Deeplabv3_Plus-R50</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3_Plus-R50_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3_Plus-R50_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>80.36</td>
|
|
|
<td>61.0531</td>
|
|
|
<td>1513.58</td>
|
|
|
<td>94.9 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>Deeplabv3_Plus-R101</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3_Plus-R101_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3_Plus-R101_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>Deeplabv3_Plus-R101</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3_Plus-R101_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3_Plus-R101_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>81.10</td>
|
|
|
<td>100.026</td>
|
|
|
<td>2460.71</td>
|
|
|
<td>162.5 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>Deeplabv3-R50</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3-R50_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3-R50_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>Deeplabv3-R50</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3-R50_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3-R50_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>79.90</td>
|
|
|
<td>82.2631</td>
|
|
|
<td>1735.83</td>
|
|
|
<td>138.3 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>Deeplabv3-R101</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3-R101_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3-R101_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>Deeplabv3-R101</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/Deeplabv3-R101_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/Deeplabv3-R101_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>80.85</td>
|
|
|
<td>121.492</td>
|
|
|
<td>2685.51</td>
|
|
|
<td>205.9 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>OCRNet_HRNet-W18</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/OCRNet_HRNet-W18_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/OCRNet_HRNet-W18_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>OCRNet_HRNet-W18</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/OCRNet_HRNet-W18_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/OCRNet_HRNet-W18_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>80.67</td>
|
|
|
<td>48.2335</td>
|
|
|
<td>906.385</td>
|
|
|
<td>43.1 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>OCRNet_HRNet-W48</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/OCRNet_HRNet-W48_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/OCRNet_HRNet-W48_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>OCRNet_HRNet-W48</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/OCRNet_HRNet-W48_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/OCRNet_HRNet-W48_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>82.15</td>
|
|
|
<td>78.9976</td>
|
|
|
<td>2226.95</td>
|
|
|
<td>249.8 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>PP-LiteSeg-T</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-LiteSeg-T_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-LiteSeg-T_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>PP-LiteSeg-T</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-LiteSeg-T_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-LiteSeg-T_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>73.10</td>
|
|
|
<td>7.6827</td>
|
|
|
<td>138.683</td>
|
|
|
<td>28.5 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>PP-LiteSeg-B</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-LiteSeg-B_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-LiteSeg-B_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>PP-LiteSeg-B</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-LiteSeg-B_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-LiteSeg-B_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>75.25</td>
|
|
|
<td>10.9935</td>
|
|
|
<td>194.727</td>
|
|
|
<td>47.0 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SegFormer-B0 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B0 (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B0 (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SegFormer-B0 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B0 (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B0 (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>76.73</td>
|
|
|
<td>11.1946</td>
|
|
|
<td>268.929</td>
|
|
|
<td>13.2 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SegFormer-B1 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B1 (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B1 (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SegFormer-B1 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B1 (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B1 (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>78.35</td>
|
|
|
<td>17.9998</td>
|
|
|
<td>403.393</td>
|
|
|
<td>48.5 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SegFormer-B2 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B2 (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B2 (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SegFormer-B2 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B2 (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B2 (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>81.60</td>
|
|
|
<td>48.0371</td>
|
|
|
<td>1248.52</td>
|
|
|
<td>96.9 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SegFormer-B3 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B3 (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B3 (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SegFormer-B3 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B3 (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B3 (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>82.47</td>
|
|
|
<td>64.341</td>
|
|
|
<td>1666.35</td>
|
|
|
<td>167.3 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SegFormer-B4 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B4 (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B4 (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SegFormer-B4 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B4 (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B4 (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>82.38</td>
|
|
|
<td>82.4336</td>
|
|
|
<td>1995.42</td>
|
|
|
<td>226.7 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SegFormer-B5 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B5 (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B5 (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SegFormer-B5 (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SegFormer-B5 (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SegFormer-B5 (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>82.58</td>
|
|
|
<td>97.3717</td>
|
|
|
<td>2420.19</td>
|
|
|
@@ -124,41 +154,41 @@ comments: true
|
|
|
</tr>
|
|
|
</tbody>
|
|
|
</table>
|
|
|
-<p><b>注:以上精度指标为 </b><a href="https://www.cityscapes-dataset.com/">Cityscapes</a><b> 数据集 mloU。以上所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。</b></p>
|
|
|
+<p><b>以上模型精度指标测量自<a href="https://www.cityscapes-dataset.com/">Cityscapes</a>数据集。GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为 8,精度类型为 FP32。</b></p>
|
|
|
<table>
|
|
|
<thead>
|
|
|
<tr>
|
|
|
-<th>模型</th><th>模型下载链接</th>
|
|
|
+<th>模型名称</th><th>Model Download Link</th>
|
|
|
<th>mloU(%)</th>
|
|
|
<th>GPU推理耗时(ms)</th>
|
|
|
-<th>CPU推理耗时(ms)</th>
|
|
|
+<th>CPU推理耗时</th>
|
|
|
<th>模型存储大小(M)</th>
|
|
|
</tr>
|
|
|
</thead>
|
|
|
<tbody>
|
|
|
<tr>
|
|
|
-<td>SeaFormer_base(slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_base(slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_base(slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SeaFormer_base(slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_base(slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_base(slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>40.92</td>
|
|
|
<td>24.4073</td>
|
|
|
<td>397.574</td>
|
|
|
<td>30.8 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SeaFormer_large (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_large (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_large (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SeaFormer_large (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_large (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_large (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>43.66</td>
|
|
|
<td>27.8123</td>
|
|
|
<td>550.464</td>
|
|
|
<td>49.8 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SeaFormer_small (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_small (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_small (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SeaFormer_small (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_small (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_small (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>38.73</td>
|
|
|
<td>19.2295</td>
|
|
|
<td>358.343</td>
|
|
|
<td>14.3 M</td>
|
|
|
</tr>
|
|
|
<tr>
|
|
|
-<td>SeaFormer_tiny (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_tiny (slice)_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_tiny (slice)_pretrained.pdparams">训练模型</a></td>
|
|
|
+<td>SeaFormer_tiny (slice)</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/SeaFormer_tiny (slice)_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/SeaFormer_tiny (slice)_pretrained.pdparams">Trained Model</a></td>
|
|
|
<td>34.58</td>
|
|
|
<td>13.9496</td>
|
|
|
<td>330.132</td>
|
|
|
@@ -166,7 +196,7 @@ comments: true
|
|
|
</tr>
|
|
|
</tbody>
|
|
|
</table>
|
|
|
-<p><b>注:以上精度指标为 </b><a href="https://groups.csail.mit.edu/vision/datasets/ADE20K/">ADE20k</a><b> 数据集, slice 表示对输入图像进行了切图操作。以上所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。</b></p></details>
|
|
|
+<p><b>SeaFormer系列模型的精度指标测量自<a href="https://groups.csail.mit.edu/vision/datasets/ADE20K/">ADE20k</a>数据集。GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为 8,精度类型为 FP32。</b></p></details>
|
|
|
|
|
|
## 2. 快速开始
|
|
|
PaddleX 所提供的预训练的模型产线均可以快速体验效果,你可以在线体验通用语义分割产线的效果,也可以在本地使用命令行或 Python 体验通用语义分割产线的效果。
|