Explorar o código

add ocrv5 rec model (#4057)

Co-authored-by: zhangyubo0722 <zangyubo0722@163.com>
zhangyubo0722 hai 6 meses
pai
achega
983b53520c

+ 62 - 6
docs/module_usage/tutorials/ocr_modules/text_recognition.en.md

@@ -19,6 +19,23 @@ The text recognition module is the core component of an OCR (Optical Character R
 <th>Introduction</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>8.45/2.36</td>
+<td>122.69/122.69</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model is dedicated to efficiently and accurately supporting four major languages—Simplified Chinese, Traditional Chinese, English, and Japanese—with a single model. It supports complex text scenarios, including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it also balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
 <td>81.53</td>
 <td>6.65 / 2.38</td>
@@ -57,6 +74,45 @@ The lightweight recognition model of PP-OCRv4 has high inference efficiency and
 
 <details><summary> 👉Model List Details</summary>
 
+* <b>PP-OCRv5 Multi-Scenario Model</b>
+
+<table>
+<tr>
+<th>Model</th><th>Model Download Link</th>
+<th>Chinese Recognition Avg Accuracy (%)</th>
+<th>English Recognition Avg Accuracy (%)</th>
+<th>Traditional Chinese Recognition Avg Accuracy (%)</th>
+<th>Japanese Recognition Avg Accuracy (%)</th>
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>Model Size (M)</th>
+<th>Description</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model efficiently and accurately supports four major languages with a single model: Simplified Chinese, Traditional Chinese, English, and Japanese. It recognizes complex text scenarios including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>Chinese Recognition Model</b>
 <table>
 <tr>
@@ -322,18 +378,18 @@ Before running the following code, please download the [demo image](https://padd
 
 ```python
 from paddlex import create_model
-model = create_model("PP-OCRv4_mobile_rec")
-output = model.predict("general_ocr_rec_001.png", batch_size=1)
+model = create_model(model_name="PP-OCRv5_server_rec")
+output = model.predict(input="general_ocr_rec_001.png", batch_size=1)
 for res in output:
-    res.print(json_format=False)
-    res.save_to_img("./output/")
-    res.save_to_json("./output/res.json")
+    res.print()
+    res.save_to_img(save_path="./output/")
+    res.save_to_json(save_path="./output/res.json")
 ```
 For more information on using PaddleX's single-model inference APIs, please refer to the [PaddleX Single-Model Python Script Usage Instructions](../../instructions/model_python_API.en.md).
 
 After running, the result obtained is:
 ```bash
-{'res': {'input_path': 'general_ocr_rec_001.png', 'page_index': None, 'rec_text': '绿洲仕格维花园公寓', 'rec_score': 0.9875497817993164}}
+{'res': {'input_path': 'general_ocr_rec_001.png', 'page_index': None, 'rec_text': '绿洲仕格维花园公寓', 'rec_score': 0.9823867082595825}}
 ````
 The meanings of the running results parameters are as follows:
 - `input_path`:Represents the path to the image of the text line to be predicted.

+ 58 - 2
docs/module_usage/tutorials/ocr_modules/text_recognition.md

@@ -19,6 +19,23 @@ comments: true
 <th>介绍</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td> 8.45/2.36 </td>
+<td> 122.69/122.69 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
 PP-OCRv4_server_rec_doc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">训练模型</a></td>
 <td>81.53</td>
@@ -58,6 +75,45 @@ en_PP-OCRv4_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model
 
 <details><summary> 👉模型列表详情</summary>
 
+* <b>PP-OCRv5 多场景模型</b>
+
+<table>
+<tr>
+<th>模型</th><th>模型下载链接</th>
+<th>中文识别 Avg Accuracy(%)</th>
+<th>英文识别 Avg Accuracy(%)</th>
+<th>繁体中文识别 Avg Accuracy(%)</th>
+<th>日文识别 Avg Accuracy(%)</th>
+<th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>模型存储大小(M)</th>
+<th>介绍</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>中文识别模型</b>
 <table>
 <tr>
@@ -345,7 +401,7 @@ devanagari_PP-OCRv3_mobile_rec_infer.tar">推理模型</a>/<a href="https://padd
 
 ```python
 from paddlex import create_model
-model = create_model(model_name="PP-OCRv4_mobile_rec")
+model = create_model(model_name="PP-OCRv5_server_rec")
 output = model.predict(input="general_ocr_rec_001.png", batch_size=1)
 for res in output:
     res.print()
@@ -355,7 +411,7 @@ for res in output:
 
 运行后,得到的结果为:
 ```bash
-{'res': {'input_path': 'general_ocr_rec_001.png', 'page_index': None, 'rec_text': '绿洲仕格维花园公寓', 'rec_score': 0.9875497817993164}}
+{'res': {'input_path': 'general_ocr_rec_001.png', 'page_index': None, 'rec_text': '绿洲仕格维花园公寓', 'rec_score': 0.9823867082595825}}
 ```
 
 运行结果参数含义如下:

+ 56 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/OCR.en.md

@@ -132,6 +132,23 @@ The General OCR pipeline is designed to solve text recognition tasks, extracting
 <th>Introduction</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>8.45/2.36</td>
+<td>122.69/122.69</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model is dedicated to efficiently and accurately supporting four major languages—Simplified Chinese, Traditional Chinese, English, and Japanese—with a single model. It supports complex text scenarios, including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it also balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
 <td>81.53</td>
 <td>6.65 / 2.38</td>
@@ -170,6 +187,45 @@ The lightweight recognition model of PP-OCRv4 has high inference efficiency and
 
 <details><summary> 👉Model List Details</summary>
 
+* <b>PP-OCRv5 Multi-Scenario Model</b>
+
+<table>
+<tr>
+<th>Model</th><th>Model Download Link</th>
+<th>Chinese Recognition Avg Accuracy (%)</th>
+<th>English Recognition Avg Accuracy (%)</th>
+<th>Traditional Chinese Recognition Avg Accuracy (%)</th>
+<th>Japanese Recognition Avg Accuracy (%)</th>
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>Model Size (M)</th>
+<th>Description</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model efficiently and accurately supports four major languages with a single model: Simplified Chinese, Traditional Chinese, English, and Japanese. It recognizes complex text scenarios including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>Chinese Recognition Model</b>
 <table>
 <tr>

+ 56 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/OCR.md

@@ -132,6 +132,23 @@ OCR(光学字符识别,Optical Character Recognition)是一种将图像中
 <th>介绍</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td> 8.45/2.36 </td>
+<td> 122.69/122.69 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
 PP-OCRv4_server_rec_doc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">训练模型</a></td>
 <td>81.53</td>
@@ -171,6 +188,45 @@ en_PP-OCRv4_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model
 
 <details><summary> 👉模型列表详情</summary>
 
+* <b>PP-OCRv5 多场景模型</b>
+
+<table>
+<tr>
+<th>模型</th><th>模型下载链接</th>
+<th>中文识别 Avg Accuracy(%)</th>
+<th>英文识别 Avg Accuracy(%)</th>
+<th>繁体中文识别 Avg Accuracy(%)</th>
+<th>日文识别 Avg Accuracy(%)</th>
+<th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>模型存储大小(M)</th>
+<th>介绍</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>中文识别模型</b>
 <table>
 <tr>

+ 17 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/PP-StructureV3.en.md

@@ -248,6 +248,23 @@ Layout parsing is a technology that extracts structured information from documen
 <th>Introduction</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td> 8.45/2.36 </td>
+<td> 122.69/122.69 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
 <td>81.53</td>
 <td>6.65 / 2.38</td>

+ 17 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/PP-StructureV3.md

@@ -230,6 +230,23 @@ comments: true
 <th>介绍</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td> 8.45/2.36 </td>
+<td> 122.69/122.69 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
 PP-OCRv4_server_rec_doc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">训练模型</a></td>
 <td>81.53</td>

+ 56 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.en.md

@@ -275,6 +275,23 @@ The seal text recognition pipeline is used to recognize the text content of seal
 <th>Introduction</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>8.45/2.36</td>
+<td>122.69/122.69</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model is dedicated to efficiently and accurately supporting four major languages—Simplified Chinese, Traditional Chinese, English, and Japanese—with a single model. It supports complex text scenarios, including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it also balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
 <td>81.53</td>
 <td>6.65 / 2.38</td>
@@ -313,6 +330,45 @@ The lightweight recognition model of PP-OCRv4 has high inference efficiency and
 
 <details><summary> 👉Model List Details</summary>
 
+* <b>PP-OCRv5 Multi-Scenario Model</b>
+
+<table>
+<tr>
+<th>Model</th><th>Model Download Link</th>
+<th>Chinese Recognition Avg Accuracy (%)</th>
+<th>English Recognition Avg Accuracy (%)</th>
+<th>Traditional Chinese Recognition Avg Accuracy (%)</th>
+<th>Japanese Recognition Avg Accuracy (%)</th>
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>Model Size (M)</th>
+<th>Description</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model efficiently and accurately supports four major languages with a single model: Simplified Chinese, Traditional Chinese, English, and Japanese. It recognizes complex text scenarios including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>Chinese Recognition Model</b>
 <table>
 <tr>

+ 56 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.md

@@ -230,6 +230,23 @@ comments: true
 <th>介绍</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td> 8.45/2.36 </td>
+<td> 122.69/122.69 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
 PP-OCRv4_server_rec_doc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">训练模型</a></td>
 <td>81.53</td>
@@ -269,6 +286,45 @@ en_PP-OCRv4_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model
 
 <details><summary> 👉模型列表详情</summary>
 
+* <b>PP-OCRv5 多场景模型</b>
+
+<table>
+<tr>
+<th>模型</th><th>模型下载链接</th>
+<th>中文识别 Avg Accuracy(%)</th>
+<th>英文识别 Avg Accuracy(%)</th>
+<th>繁体中文识别 Avg Accuracy(%)</th>
+<th>日文识别 Avg Accuracy(%)</th>
+<th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>模型存储大小(M)</th>
+<th>介绍</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>中文识别模型</b>
 <table>
 <tr>

+ 56 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_v2.en.md

@@ -128,6 +128,23 @@ The General Table Recognition v2 Pipeline (PP-TableMagic) is designed to solve t
 <th>Introduction</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>8.45/2.36</td>
+<td>122.69/122.69</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model is dedicated to efficiently and accurately supporting four major languages—Simplified Chinese, Traditional Chinese, English, and Japanese—with a single model. It supports complex text scenarios, including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it also balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv4_server_rec_doc_infer.tar">Inference Model</a>/<a href="">Training Model</a></td>
 <td>81.53</td>
 <td>6.65 / 2.38</td>
@@ -166,6 +183,45 @@ The lightweight recognition model of PP-OCRv4 has high inference efficiency and
 
 <details><summary> 👉Model List Details</summary>
 
+* <b>PP-OCRv5 Multi-Scenario Model</b>
+
+<table>
+<tr>
+<th>Model</th><th>Model Download Link</th>
+<th>Chinese Recognition Avg Accuracy (%)</th>
+<th>English Recognition Avg Accuracy (%)</th>
+<th>Traditional Chinese Recognition Avg Accuracy (%)</th>
+<th>Japanese Recognition Avg Accuracy (%)</th>
+<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
+<th>Model Size (M)</th>
+<th>Description</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_server_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">Training Model</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec is a next-generation text recognition model. This model efficiently and accurately supports four major languages with a single model: Simplified Chinese, Traditional Chinese, English, and Japanese. It recognizes complex text scenarios including handwritten, vertical text, pinyin, and rare characters. While maintaining recognition accuracy, it balances inference speed and model robustness, providing efficient and precise technical support for document understanding in various scenarios.</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td>
+<td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-OCRv5_mobile_rec_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">Training Model</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td>1.46/5.43</td>
+<td>5.32/91.79</td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>Chinese Recognition Model</b>
 <table>
 <tr>

+ 56 - 0
docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_v2.md

@@ -129,6 +129,23 @@ comments: true
 <th>介绍</th>
 </tr>
 <tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td> 8.45/2.36 </td>
+<td> 122.69/122.69 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+<tr>
 <td>PP-OCRv4_server_rec_doc</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
 PP-OCRv4_server_rec_doc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_doc_pretrained.pdparams">训练模型</a></td>
 <td>81.53</td>
@@ -168,6 +185,45 @@ en_PP-OCRv4_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model
 
 <details><summary> 👉模型列表详情</summary>
 
+* <b>PP-OCRv5 多场景模型</b>
+
+<table>
+<tr>
+<th>模型</th><th>模型下载链接</th>
+<th>中文识别 Avg Accuracy(%)</th>
+<th>英文识别 Avg Accuracy(%)</th>
+<th>繁体中文识别 Avg Accuracy(%)</th>
+<th>日文识别 Avg Accuracy(%)</th>
+<th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th>
+<th>模型存储大小(M)</th>
+<th>介绍</th>
+</tr>
+<tr>
+<td>PP-OCRv5_server_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_server_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams">训练模型</a></td>
+<td>86.38</td>
+<td>64.70</td>
+<td>93.29</td>
+<td>60.35</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>81 M</td>
+<td rowspan="2">PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。</td>
+</tr>
+<tr>
+<td>PP-OCRv5_mobile_rec</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/\
+PP-OCRv5_mobile_rec_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams">训练模型</a></td>
+<td>81.29</td>
+<td>66.00</td>
+<td>83.55</td>
+<td>54.65</td>
+<td> 1.46/5.43 </td>
+<td> 5.32/91.79 </td>
+<td>16 M</td>
+</tr>
+</table>
+
 * <b>中文识别模型</b>
 <table>
 <tr>