|
|
@@ -569,9 +569,6 @@ def task_evaluate():
|
|
|
ret = get_evaluate_result(data, SD.workspace)
|
|
|
if ret['evaluate_status'] == TaskStatus.XEVALUATED and ret[
|
|
|
'result'] is not None:
|
|
|
- if 'Confusion_Matrix' in ret['result']:
|
|
|
- ret['result']['Confusion_Matrix'] = ret['result'][
|
|
|
- 'Confusion_Matrix']
|
|
|
ret['result'] = CustomEncoder().encode(ret['result'])
|
|
|
ret['result'] = json.loads(ret['result'])
|
|
|
ret['evaluate_status'] = ret['evaluate_status'].value
|
|
|
@@ -893,16 +890,11 @@ def model():
|
|
|
return ret
|
|
|
from .model import get_model_details
|
|
|
ret = get_model_details(data, SD.workspace)
|
|
|
- ret['eval_result']['Confusion_Matrix'] = ret['eval_result'][
|
|
|
- 'Confusion_Matrix'].tolist()
|
|
|
ret['eval_result'] = CustomEncoder().encode(ret['eval_result'])
|
|
|
ret['task_params'] = CustomEncoder().encode(ret['task_params'])
|
|
|
return ret
|
|
|
if request.method == 'POST':
|
|
|
if data['type'] == 'pretrained':
|
|
|
- if 'eval_results' in data:
|
|
|
- data['eval_results']['Confusion_Matrix'] = np.array(data[
|
|
|
- 'eval_results']['Confusion_Matrix'])
|
|
|
from .model import create_pretrained_model
|
|
|
ret = create_pretrained_model(data, SD.workspace,
|
|
|
SD.monitored_processes)
|