|
@@ -1,126 +0,0 @@
|
|
|
-# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
-#
|
|
|
|
|
-# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
-# you may not use this file except in compliance with the License.
|
|
|
|
|
-# You may obtain a copy of the License at
|
|
|
|
|
-#
|
|
|
|
|
-# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
-#
|
|
|
|
|
-# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
-# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
-# See the License for the specific language governing permissions and
|
|
|
|
|
-# limitations under the License.
|
|
|
|
|
-
|
|
|
|
|
-import six
|
|
|
|
|
-import numpy as np
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
|
|
|
|
|
- det_res = []
|
|
|
|
|
- k = 0
|
|
|
|
|
- for i in range(len(bbox_nums)):
|
|
|
|
|
- cur_image_id = int(image_id[i][0])
|
|
|
|
|
- det_nums = bbox_nums[i]
|
|
|
|
|
- for j in range(det_nums):
|
|
|
|
|
- dt = bboxes[k]
|
|
|
|
|
- k = k + 1
|
|
|
|
|
- num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
|
|
|
|
|
- if int(num_id) < 0:
|
|
|
|
|
- continue
|
|
|
|
|
- category_id = label_to_cat_id_map[int(num_id)]
|
|
|
|
|
- w = xmax - xmin + bias
|
|
|
|
|
- h = ymax - ymin + bias
|
|
|
|
|
- bbox = [xmin, ymin, w, h]
|
|
|
|
|
- dt_res = {
|
|
|
|
|
- 'image_id': cur_image_id,
|
|
|
|
|
- 'category_id': category_id,
|
|
|
|
|
- 'bbox': bbox,
|
|
|
|
|
- 'score': score
|
|
|
|
|
- }
|
|
|
|
|
- det_res.append(dt_res)
|
|
|
|
|
- return det_res
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
|
|
|
|
|
- det_res = []
|
|
|
|
|
- k = 0
|
|
|
|
|
- for i in range(len(bbox_nums)):
|
|
|
|
|
- cur_image_id = int(image_id[i][0])
|
|
|
|
|
- det_nums = bbox_nums[i]
|
|
|
|
|
- for j in range(det_nums):
|
|
|
|
|
- dt = bboxes[k]
|
|
|
|
|
- k = k + 1
|
|
|
|
|
- num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
|
|
|
|
|
- if int(num_id) < 0:
|
|
|
|
|
- continue
|
|
|
|
|
- category_id = label_to_cat_id_map[int(num_id)]
|
|
|
|
|
- rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
|
|
|
|
|
- dt_res = {
|
|
|
|
|
- 'image_id': cur_image_id,
|
|
|
|
|
- 'category_id': category_id,
|
|
|
|
|
- 'bbox': rbox,
|
|
|
|
|
- 'score': score
|
|
|
|
|
- }
|
|
|
|
|
- det_res.append(dt_res)
|
|
|
|
|
- return det_res
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
|
|
|
|
|
- import pycocotools.mask as mask_util
|
|
|
|
|
- seg_res = []
|
|
|
|
|
- k = 0
|
|
|
|
|
- for i in range(len(mask_nums)):
|
|
|
|
|
- cur_image_id = int(image_id[i][0])
|
|
|
|
|
- det_nums = mask_nums[i]
|
|
|
|
|
- for j in range(det_nums):
|
|
|
|
|
- mask = masks[k].astype(np.uint8)
|
|
|
|
|
- score = float(bboxes[k][1])
|
|
|
|
|
- label = int(bboxes[k][0])
|
|
|
|
|
- k = k + 1
|
|
|
|
|
- if label == -1:
|
|
|
|
|
- continue
|
|
|
|
|
- cat_id = label_to_cat_id_map[label]
|
|
|
|
|
- rle = mask_util.encode(
|
|
|
|
|
- np.array(
|
|
|
|
|
- mask[:, :, None], order="F", dtype="uint8"))[0]
|
|
|
|
|
- if six.PY3:
|
|
|
|
|
- if 'counts' in rle:
|
|
|
|
|
- rle['counts'] = rle['counts'].decode("utf8")
|
|
|
|
|
- sg_res = {
|
|
|
|
|
- 'image_id': cur_image_id,
|
|
|
|
|
- 'category_id': cat_id,
|
|
|
|
|
- 'segmentation': rle,
|
|
|
|
|
- 'score': score
|
|
|
|
|
- }
|
|
|
|
|
- seg_res.append(sg_res)
|
|
|
|
|
- return seg_res
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
|
|
|
|
|
- import pycocotools.mask as mask_util
|
|
|
|
|
- segm_res = []
|
|
|
|
|
- # for each batch
|
|
|
|
|
- segms = results['segm'].astype(np.uint8)
|
|
|
|
|
- clsid_labels = results['cate_label']
|
|
|
|
|
- clsid_scores = results['cate_score']
|
|
|
|
|
- lengths = segms.shape[0]
|
|
|
|
|
- im_id = int(image_id[0][0])
|
|
|
|
|
- if lengths == 0 or segms is None:
|
|
|
|
|
- return None
|
|
|
|
|
- # for each sample
|
|
|
|
|
- for i in range(lengths - 1):
|
|
|
|
|
- clsid = int(clsid_labels[i])
|
|
|
|
|
- catid = num_id_to_cat_id_map[clsid]
|
|
|
|
|
- score = float(clsid_scores[i])
|
|
|
|
|
- mask = segms[i]
|
|
|
|
|
- segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
|
|
|
|
|
- segm['counts'] = segm['counts'].decode('utf8')
|
|
|
|
|
- coco_res = {
|
|
|
|
|
- 'image_id': im_id,
|
|
|
|
|
- 'category_id': catid,
|
|
|
|
|
- 'segmentation': segm,
|
|
|
|
|
- 'score': score
|
|
|
|
|
- }
|
|
|
|
|
- segm_res.append(coco_res)
|
|
|
|
|
- return segm_res
|
|
|