|
|
定点量化使用更少的比特数(如8-bit、3-bit、2-bit等)表示神经网络的权重和激活值,从而加速模型推理速度。PaddleX提供了训练后量化技术,其原理可参见[训练后量化原理](https://paddlepaddle.github.io/PaddleSlim/algo/algo.html#id14),该量化使用KL散度确定量化比例因子,将FP32模型转成INT8模型,且不需要重新训练,可以快速得到量化模型。
|
|
定点量化使用更少的比特数(如8-bit、3-bit、2-bit等)表示神经网络的权重和激活值,从而加速模型推理速度。PaddleX提供了训练后量化技术,其原理可参见[训练后量化原理](https://paddlepaddle.github.io/PaddleSlim/algo/algo.html#id14),该量化使用KL散度确定量化比例因子,将FP32模型转成INT8模型,且不需要重新训练,可以快速得到量化模型。
|