|
|
@@ -71,6 +71,62 @@ Parameter description:
|
|
|
--device: The GPU index to be used (e.g., gpu:0 means using the 0th GPU, gpu:1,2 means using the 1st and 2nd GPUs), or you can choose to use CPU (--device cpu).
|
|
|
```
|
|
|
|
|
|
+After running, the results will be printed on the terminal as follows:
|
|
|
+
|
|
|
+```bash
|
|
|
+{"res":
|
|
|
+ {
|
|
|
+ 'input_path': 'samples/LIDAR_TOP/n015-2018-10-08-15-36-50+0800__LIDAR_TOP__1538984253447765.pcd.bin',
|
|
|
+ 'sample_id': 'b4ff30109dd14c89b24789dc5713cf8c',
|
|
|
+ 'input_img_paths': [
|
|
|
+ 'samples/CAM_FRONT_LEFT/n015-2018-10-08-15-36-50+0800__CAM_FRONT_LEFT__1538984253404844.jpg',
|
|
|
+ 'samples/CAM_FRONT/n015-2018-10-08-15-36-50+0800__CAM_FRONT__1538984253412460.jpg',
|
|
|
+ 'samples/CAM_FRONT_RIGHT/n015-2018-10-08-15-36-50+0800__CAM_FRONT_RIGHT__1538984253420339.jpg',
|
|
|
+ 'samples/CAM_BACK_RIGHT/n015-2018-10-08-15-36-50+0800__CAM_BACK_RIGHT__1538984253427893.jpg',
|
|
|
+ 'samples/CAM_BACK/n015-2018-10-08-15-36-50+0800__CAM_BACK__1538984253437525.jpg',
|
|
|
+ 'samples/CAM_BACK_LEFT/n015-2018-10-08-15-36-50+0800__CAM_BACK_LEFT__1538984253447423.jpg'
|
|
|
+ ]
|
|
|
+ "boxes_3d": [
|
|
|
+ [
|
|
|
+ 14.5425386428833,
|
|
|
+ 22.142045974731445,
|
|
|
+ -1.2903141975402832,
|
|
|
+ 1.8441576957702637,
|
|
|
+ 4.433370113372803,
|
|
|
+ 1.7367216348648071,
|
|
|
+ 6.367165565490723,
|
|
|
+ 0.0036598597653210163,
|
|
|
+ -0.013568558730185032
|
|
|
+ ]
|
|
|
+ ],
|
|
|
+ "labels_3d": [
|
|
|
+ 0
|
|
|
+ ],
|
|
|
+ "scores_3d": [
|
|
|
+ 0.9920279383659363
|
|
|
+ ]
|
|
|
+ }
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+The meanings of the result parameters are as follows:
|
|
|
+
|
|
|
+- `input_path`: Indicates the path to the input point cloud data of the sample to be predicted.
|
|
|
+- `sample_id`: Indicates the unique identifier of the input sample to be predicted.
|
|
|
+- `input_img_paths`: Indicates the paths to the input image data of the sample to be predicted.
|
|
|
+- `boxes_3d`: Represents all the predicted bounding box information for the 3D sample. Each bounding box information is a list of length 9, with each element representing:
|
|
|
+ - 0: x-coordinate of the center point
|
|
|
+ - 1: y-coordinate of the center point
|
|
|
+ - 2: z-coordinate of the center point
|
|
|
+ - 3: Width of the detection box
|
|
|
+ - 4: Length of the detection box
|
|
|
+ - 5: Height of the detection box
|
|
|
+ - 6: Rotation angle
|
|
|
+ - 7: Velocity in the x-direction of the coordinate system
|
|
|
+ - 8: Velocity in the y-direction of the coordinate system
|
|
|
+- `labels_3d`: Represents the predicted categories corresponding to all the predicted bounding boxes of the 3D sample.
|
|
|
+- `scores_3d`: Represents the confidence levels corresponding to all the predicted bounding boxes of the 3D sample.
|
|
|
+
|
|
|
#### 2.2.2 Python Script Integration
|
|
|
* The above command line is for quick experience. Generally, in projects, integration through code is often required. You can complete quick inference of the pipeline with a few lines of code as follows:
|
|
|
|