jiangjiajun 5 éve
szülő
commit
ceb1fdf7d7

+ 2 - 0
docs/apis/transforms/cls_transforms.md

@@ -122,6 +122,7 @@ paddlex.cls.transforms.RandomDistort(brightness_range=0.9, brightness_prob=0.5,
 * **hue_range** (int): 色调因子的范围。默认为18。
 * **hue_prob** (float): 随机调整色调的概率。默认为0.5。
 
+<!--
 ## ComposedClsTransforms
 ```python
 paddlex.cls.transforms.ComposedClsTransforms(mode, crop_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
@@ -183,3 +184,4 @@ eval_transforms = transforms.Composed([
 		transforms.Normalize()
 ])
 ```
+-->

+ 2 - 0
docs/apis/transforms/det_transforms.md

@@ -168,6 +168,7 @@ paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3,
 * **allow_no_crop** (bool): 是否允许未进行裁剪。默认值为True。
 * **cover_all_box** (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
 
+<!--
 ## ComposedRCNNTransforms
 ```python
 paddlex.det.transforms.ComposedRCNNTransforms(mode, min_max_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
@@ -302,3 +303,4 @@ eval_transforms = transforms.Composed([
 		transforms.Normalize()
 ])
 ```
+-->

+ 2 - 0
docs/apis/transforms/seg_transforms.md

@@ -167,6 +167,7 @@ paddlex.seg.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5,
 * **hue_range** (int): 色调因子的范围。默认为18。
 * **hue_prob** (float): 随机调整色调的概率。默认为0.5。
 
+<!--
 ## ComposedSegTransforms
 ```python
 paddlex.det.transforms.ComposedSegTransforms(mode, min_max_size=[400, 600], train_crop_shape=[769, 769], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
@@ -228,3 +229,4 @@ eval_transforms = transforms.Composed([
         transforms.Normalize()
 ])
 ```
+-->

+ 4 - 4
docs/train/classification.md

@@ -10,10 +10,10 @@ PaddleX共提供了20+的图像分类模型,可满足开发者不同场景的
 
 | 模型(点击获取代码)               | Top1精度 | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
 | :----------------  | :------- | :------- | :---------  | :---------  | :-----    |
-| [MobileNetV3_small_ssld](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/mobilenetv3_small_ssld.py) |  71.3%  |  21.0MB  |  6.809ms   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
-| [MobileNetV2](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/mobilenetv2.py)        | 72.2%  | 14.0MB   |  4.546ms  | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
-| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/shufflenetv2.py)     | 68.8%  | 9.0MB   | 6.101ms   | -  |  模型体积小,预测速度快,适用于低性能或移动端设备   |
-| [ResNet50_vd_ssld](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/resnet50_vd_ssld.py)   |  82.4%   |   102.8MB    |  9.058ms       |   -    | 模型精度高,适用于服务端部署   |
+| [MobileNetV3_small_ssld](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv3_small_ssld.py) |  71.3%  |  21.0MB  |  6.809ms   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
+| [MobileNetV2](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv2.py)        | 72.2%  | 14.0MB   |  4.546ms  | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
+| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/shufflenetv2.py)     | 68.8%  | 9.0MB   | 6.101ms   | -  |  模型体积小,预测速度快,适用于低性能或移动端设备   |
+| [ResNet50_vd_ssld](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/resnet50_vd_ssld.py)   |  82.4%   |   102.8MB    |  9.058ms       |   -    | 模型精度高,适用于服务端部署   |
 
 
 ## 开始训练

+ 3 - 3
docs/train/instance_segmentation.md

@@ -10,9 +10,9 @@ PaddleX目前提供了MaskRCNN实例分割模型结构,多种backbone模型,
 
 | 模型(点击获取代码)               | Box MMAP/Seg MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
 | :----------------  | :------- | :------- | :---------  | :---------  | :-----    |
-| [MaskRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py)   |  36.5%/32.2%   |   170.0MB    |  160.185ms       |   -    | 模型精度高,适用于服务端部署   |
-| [MaskRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py)   |  -/-   |   120.0MB    |  -       |   -    | 模型精度高,适用于服务端部署   |
-| [MaskRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py)   |  -/-   |   116.MB    |  -       |   -    | 模型精度高,预测速度快,适用于服务端部署   |
+| [MaskRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py)   |  36.5%/32.2%   |   170.0MB    |  160.185ms       |   -    | 模型精度高,适用于服务端部署   |
+| [MaskRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py)   |  -/-   |   120.0MB    |  -       |   -    | 模型精度高,适用于服务端部署   |
+| [MaskRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py)   |  -/-   |   116.MB    |  -       |   -    | 模型精度高,预测速度快,适用于服务端部署   |
 
 
 ## 开始训练

+ 6 - 6
docs/train/object_detection.md

@@ -10,12 +10,12 @@ PaddleX目前提供了FasterRCNN和YOLOv3两种检测结构,多种backbone模型
 
 | 模型(点击获取代码)               | Box MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
 | :----------------  | :------- | :------- | :---------  | :---------  | :-----    |
-| [YOLOv3-MobileNetV1](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_mobilenetv1.py) |  29.3%  |  99.2MB  |  15.442ms   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
-| [YOLOv3-MobileNetV3](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_mobilenetv3.py)        | 31.6%  | 100.7MB   |  143.322ms  | -  |  模型小,移动端上预测速度有优势   |
-| [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_darknet53.py)     | 38.9  | 249.2MB   | 42.672ms   | -  |  模型较大,预测速度快,适用于服务端   |
-| [FasterRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_r50_fpn.py)   |  37.2%   |   136.0MB    |  197.715ms       |   -    | 模型精度高,适用于服务端部署   |
-| [FasterRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_r18_fpn.py)   |  -   |   -    |  -       |   -    | 模型精度高,适用于服务端部署   |
-| [FasterRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py)   |  36.0%   |   115.MB    |  81.592ms       |   -    | 模型精度高,预测速度快,适用于服务端部署   |
+| [YOLOv3-MobileNetV1](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv1.py) |  29.3%  |  99.2MB  |  15.442ms   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
+| [YOLOv3-MobileNetV3](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv3.py)        | 31.6%  | 100.7MB   |  143.322ms  | -  |  模型小,移动端上预测速度有优势   |
+| [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_darknet53.py)     | 38.9  | 249.2MB   | 42.672ms   | -  |  模型较大,预测速度快,适用于服务端   |
+| [FasterRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r50_fpn.py)   |  37.2%   |   136.0MB    |  197.715ms       |   -    | 模型精度高,适用于服务端部署   |
+| [FasterRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r18_fpn.py)   |  -   |   -    |  -       |   -    | 模型精度高,适用于服务端部署   |
+| [FasterRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py)   |  36.0%   |   115.MB    |  81.592ms       |   -    | 模型精度高,预测速度快,适用于服务端部署   |
 
 
 ## 开始训练

+ 6 - 6
docs/train/semantic_segmentation.md

@@ -10,12 +10,12 @@ PaddleX目前提供了DeepLabv3p、UNet、HRNet和FastSCNN四种语义分割结
 
 | 模型(点击获取代码)               | mIOU | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
 | :----------------  | :------- | :------- | :---------  | :---------  | :-----    |
-| [DeepLabv3p-MobileNetV2-x0.25](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py) |  -  |  2.9MB  |  -   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
-| [DeepLabv3p-MobileNetV2-x1.0](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py) |  69.8%  |  11MB  |  -   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
-| [DeepLabv3p-Xception65](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy)        | 79.3%  | 158MB   |  -  | -  |  模型大,精度高,适用于服务端   |
-| [UNet](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/unet.py)     | -  | 52MB   | -   | -  |  模型较大,精度高,适用于服务端   |
-| [HRNet](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/hrnet.py)   |  79.4%   |   37MB    |  -       |   -    | 模型较小,模型精度高,适用于服务端部署   |
-| [FastSCNN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/fast_scnn.py)   |  -   |   4.5MB    |  -       |   -    | 模型小,预测速度快,适用于低性能或移动端设备   |
+| [DeepLabv3p-MobileNetV2-x0.25](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py) |  -  |  2.9MB  |  -   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
+| [DeepLabv3p-MobileNetV2-x1.0](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py) |  69.8%  |  11MB  |  -   | -  |  模型小,预测速度快,适用于低性能或移动端设备   |
+| [DeepLabv3p-Xception65](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy)        | 79.3%  | 158MB   |  -  | -  |  模型大,精度高,适用于服务端   |
+| [UNet](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/unet.py)     | -  | 52MB   | -   | -  |  模型较大,精度高,适用于服务端   |
+| [HRNet](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/hrnet.py)   |  79.4%   |   37MB    |  -       |   -    | 模型较小,模型精度高,适用于服务端部署   |
+| [FastSCNN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/fast_scnn.py)   |  -   |   4.5MB    |  -       |   -    | 模型小,预测速度快,适用于低性能或移动端设备   |
 
 
 ## 开始训练

+ 4 - 2
paddlex/__init__.py

@@ -13,6 +13,7 @@
 # limitations under the License.
 
 from __future__ import absolute_import
+
 import os
 if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
     os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
@@ -21,6 +22,7 @@ if 'FLAGS_allocator_strategy' not in os.environ:
 if "CUDA_VISIBLE_DEVICES" in os.environ:
     if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
         os.environ["CUDA_VISIBLE_DEVICES"] = ""
+
 from .utils.utils import get_environ_info
 from . import cv
 from . import det
@@ -38,7 +40,7 @@ except:
         "[WARNING] pycocotools is not installed, detection model is not available now."
     )
     print(
-        "[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md"
+        "[WARNING] pycocotools install: https://paddlex.readthedocs.io/zh_CN/develop/install.html#pycocotools"
     )
 
 import paddlehub as hub
@@ -54,4 +56,4 @@ log_level = 2
 
 from . import interpret
 
-__version__ = '1.0.7'
+__version__ = '1.0.8'