|
|
@@ -85,7 +85,7 @@ def precompute_normlime_weights(list_data_, predict_fn, num_samples=3000, batch_
|
|
|
precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, save_dir)
|
|
|
|
|
|
# load precomputed results, compute normlime weights and save.
|
|
|
- fname_list = glob.glob(os.path.join(save_dir, 'lime_weights_s{}.npy'.format(num_samples)))
|
|
|
+ fname_list = glob.glob(os.path.join(save_dir, 'lime_weights_s{}*.npy'.format(num_samples)))
|
|
|
return compute_normlime_weights(fname_list, save_dir, num_samples)
|
|
|
|
|
|
|
|
|
@@ -174,6 +174,7 @@ def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, sav
|
|
|
|
|
|
def compute_normlime_weights(a_list_lime_fnames, save_dir, lime_num_samples):
|
|
|
normlime_weights_all_labels = {}
|
|
|
+
|
|
|
for f in a_list_lime_fnames:
|
|
|
try:
|
|
|
lime_weights_and_cluster = np.load(f, allow_pickle=True).item()
|
|
|
@@ -183,7 +184,6 @@ def compute_normlime_weights(a_list_lime_fnames, save_dir, lime_num_samples):
|
|
|
logging.info('When loading precomputed LIME result, skipping' + str(f))
|
|
|
continue
|
|
|
logging.info('Loading precomputed LIME result,' + str(f))
|
|
|
-
|
|
|
pred_labels = lime_weights.keys()
|
|
|
for y in pred_labels:
|
|
|
normlime_weights = normlime_weights_all_labels.get(y, {})
|