|
|
@@ -42,7 +42,7 @@ def sensitivity(program,
|
|
|
if pruned_ratios is None:
|
|
|
pruned_ratios = np.arange(0.1, 1, step=0.1)
|
|
|
|
|
|
- total_evaluate_iters = 1
|
|
|
+ total_evaluate_iters = 0
|
|
|
for name in param_names:
|
|
|
if name not in sensitivities:
|
|
|
sensitivities[name] = {}
|
|
|
@@ -52,12 +52,6 @@ def sensitivity(program,
|
|
|
len(list(pruned_ratios)) - len(sensitivities[name]))
|
|
|
eta = '-'
|
|
|
start_time = time.time()
|
|
|
- progress = 1.0 / total_evaluate_iters
|
|
|
- progress = "%.2f%%" % (progress * 100)
|
|
|
- logging.info(
|
|
|
- "Total evaluate iters={}, current={}, progress={}, eta={}".format(
|
|
|
- total_evaluate_iters, 1, progress, eta),
|
|
|
- use_color=True)
|
|
|
baseline = eval_func(graph.program)
|
|
|
cost = time.time() - start_time
|
|
|
eta = cost * (total_evaluate_iters - 1)
|
|
|
@@ -73,7 +67,7 @@ def sensitivity(program,
|
|
|
logging.info(
|
|
|
"Total evaluate iters={}, current={}, progress={}, eta={}".
|
|
|
format(
|
|
|
- total_evaluate_iters, current_iter+1, progress,
|
|
|
+ total_evaluate_iters, current_iter, progress,
|
|
|
seconds_to_hms(
|
|
|
int(cost * (total_evaluate_iters - current_iter)))),
|
|
|
use_color=True)
|