|
|
@@ -1,430 +0,0 @@
|
|
|
-# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
|
-#
|
|
|
-# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-# you may not use this file except in compliance with the License.
|
|
|
-# You may obtain a copy of the License at
|
|
|
-#
|
|
|
-# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-#
|
|
|
-# Unless required by applicable law or agreed to in writing, software
|
|
|
-# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-# See the License for the specific language governing permissions and
|
|
|
-# limitations under the License.
|
|
|
-
|
|
|
-import os
|
|
|
-import sys
|
|
|
-import time
|
|
|
-import json
|
|
|
-import traceback
|
|
|
-import threading
|
|
|
-from abc import ABC, abstractmethod
|
|
|
-from pathlib import Path
|
|
|
-import lazy_paddle as paddle
|
|
|
-
|
|
|
-from ..build_model import build_model
|
|
|
-from ....utils.file_interface import write_json_file
|
|
|
-from ....utils import logging
|
|
|
-
|
|
|
-
|
|
|
-def try_except_decorator(func):
|
|
|
- """try-except"""
|
|
|
-
|
|
|
- def wrap(self, *args, **kwargs):
|
|
|
- try:
|
|
|
- func(self, *args, **kwargs)
|
|
|
- except Exception as e:
|
|
|
- exc_type, exc_value, exc_tb = sys.exc_info()
|
|
|
- self.save_json()
|
|
|
- traceback.print_exception(exc_type, exc_value, exc_tb)
|
|
|
- finally:
|
|
|
- self.processing = False
|
|
|
-
|
|
|
- return wrap
|
|
|
-
|
|
|
-
|
|
|
-class BaseTrainDeamon(ABC):
|
|
|
- """BaseTrainResultDemon"""
|
|
|
-
|
|
|
- update_interval = 600
|
|
|
- last_k = 5
|
|
|
-
|
|
|
- def __init__(self, config):
|
|
|
- """init"""
|
|
|
- self.global_config = config.Global
|
|
|
- self.disable_deamon = config.get("Benchmark", {}).get("disable_deamon", False)
|
|
|
- self.init_pre_hook()
|
|
|
- self.output = self.global_config.output
|
|
|
- self.train_outputs = self.get_train_outputs()
|
|
|
- self.save_paths = self.get_save_paths()
|
|
|
- self.results = self.init_train_result()
|
|
|
- self.save_json()
|
|
|
- self.models = {}
|
|
|
- self.init_post_hook()
|
|
|
-
|
|
|
- self.config_recorder = {}
|
|
|
- self.model_recorder = {}
|
|
|
- self.processing = False
|
|
|
- self.start()
|
|
|
-
|
|
|
- def init_train_result(self):
|
|
|
- """init train result structure"""
|
|
|
- model_names = self.init_model_names()
|
|
|
- configs = self.init_configs()
|
|
|
- train_log = self.init_train_log()
|
|
|
- vdl = self.init_vdl_log()
|
|
|
-
|
|
|
- results = []
|
|
|
- for i, model_name in enumerate(model_names):
|
|
|
- results.append(
|
|
|
- {
|
|
|
- "model_name": model_name,
|
|
|
- "done_flag": False,
|
|
|
- "config": configs[i],
|
|
|
- "label_dict": "",
|
|
|
- "train_log": train_log,
|
|
|
- "visualdl_log": vdl,
|
|
|
- "models": self.init_model_pkg(),
|
|
|
- }
|
|
|
- )
|
|
|
- return results
|
|
|
-
|
|
|
- def get_save_names(self):
|
|
|
- """get names to save"""
|
|
|
- return ["train_result.json"]
|
|
|
-
|
|
|
- def get_train_outputs(self):
|
|
|
- """get training outputs dir"""
|
|
|
- return [Path(self.output)]
|
|
|
-
|
|
|
- def init_model_names(self):
|
|
|
- """get models name"""
|
|
|
- return [self.global_config.model]
|
|
|
-
|
|
|
- def get_save_paths(self):
|
|
|
- """get the path to save train_result.json"""
|
|
|
- return [Path(self.output, save_name) for save_name in self.get_save_names()]
|
|
|
-
|
|
|
- def init_configs(self):
|
|
|
- """get the init value of config field in result"""
|
|
|
- return [""] * len(self.init_model_names())
|
|
|
-
|
|
|
- def init_train_log(self):
|
|
|
- """get train log"""
|
|
|
- return ""
|
|
|
-
|
|
|
- def init_vdl_log(self):
|
|
|
- """get visualdl log"""
|
|
|
- return ""
|
|
|
-
|
|
|
- def init_model_pkg(self):
|
|
|
- """get model package"""
|
|
|
- init_content = self.init_model_content()
|
|
|
- model_pkg = {}
|
|
|
-
|
|
|
- for pkg in self.get_watched_model():
|
|
|
- model_pkg[pkg] = init_content
|
|
|
- return model_pkg
|
|
|
-
|
|
|
- def normlize_path(self, dict_obj, relative_to):
|
|
|
- """normlize path to string type path relative to the output"""
|
|
|
- for key in dict_obj:
|
|
|
- if isinstance(dict_obj[key], dict):
|
|
|
- self.normlize_path(dict_obj[key], relative_to)
|
|
|
- if isinstance(dict_obj[key], Path):
|
|
|
- dict_obj[key] = (
|
|
|
- dict_obj[key]
|
|
|
- .resolve()
|
|
|
- .relative_to(relative_to.resolve())
|
|
|
- .as_posix()
|
|
|
- )
|
|
|
-
|
|
|
- def save_json(self):
|
|
|
- """save result to json"""
|
|
|
- for i, result in enumerate(self.results):
|
|
|
- self.save_paths[i].parent.mkdir(parents=True, exist_ok=True)
|
|
|
- self.normlize_path(result, relative_to=self.save_paths[i].parent)
|
|
|
- write_json_file(result, self.save_paths[i], indent=2)
|
|
|
-
|
|
|
- def start(self):
|
|
|
- """start deamon thread"""
|
|
|
- self.exit = False
|
|
|
- self.thread = threading.Thread(target=self.run)
|
|
|
- self.thread.daemon = True
|
|
|
- if not self.disable_deamon:
|
|
|
- self.thread.start()
|
|
|
-
|
|
|
- def stop_hook(self):
|
|
|
- """hook befor stop"""
|
|
|
- for result in self.results:
|
|
|
- result["done_flag"] = True
|
|
|
- self.update()
|
|
|
-
|
|
|
- def stop(self):
|
|
|
- """stop self"""
|
|
|
- self.exit = True
|
|
|
- while True:
|
|
|
- if not self.processing:
|
|
|
- self.stop_hook()
|
|
|
- break
|
|
|
- time.sleep(60)
|
|
|
-
|
|
|
- def run(self):
|
|
|
- """main function"""
|
|
|
- while not self.exit:
|
|
|
- self.update()
|
|
|
- if self.exit:
|
|
|
- break
|
|
|
- time.sleep(self.update_interval)
|
|
|
-
|
|
|
- def update_train_log(self, train_output):
|
|
|
- """update train log"""
|
|
|
- train_log_path = train_output / "train.log"
|
|
|
- if train_log_path.exists():
|
|
|
- return train_log_path
|
|
|
-
|
|
|
- def update_vdl_log(self, train_output):
|
|
|
- """update visualdl log"""
|
|
|
- vdl_path = list(train_output.glob("vdlrecords*log"))
|
|
|
- if len(vdl_path) >= 1:
|
|
|
- return vdl_path[0]
|
|
|
-
|
|
|
- def update_label_dict(self, train_output):
|
|
|
- """update label dict"""
|
|
|
- dict_path = train_output.joinpath("label_dict.txt")
|
|
|
- if not dict_path.exists():
|
|
|
- return ""
|
|
|
- return dict_path
|
|
|
-
|
|
|
- @try_except_decorator
|
|
|
- def update(self):
|
|
|
- """update train result json"""
|
|
|
- self.processing = True
|
|
|
- for i in range(len(self.results)):
|
|
|
- self.results[i] = self.update_result(self.results[i], self.train_outputs[i])
|
|
|
- self.save_json()
|
|
|
- self.processing = False
|
|
|
-
|
|
|
- def get_model(self, model_name, config_path):
|
|
|
- """initialize the model"""
|
|
|
- if model_name not in self.models:
|
|
|
- config, model = build_model(
|
|
|
- model_name,
|
|
|
- # using CPU to export model
|
|
|
- device="cpu",
|
|
|
- config_path=config_path,
|
|
|
- )
|
|
|
- self.models[model_name] = model
|
|
|
- return self.models[model_name]
|
|
|
-
|
|
|
- def get_watched_model(self):
|
|
|
- """get the models needed to be watched"""
|
|
|
- watched_models = [f"last_{i}" for i in range(1, self.last_k + 1)]
|
|
|
- watched_models.append("best")
|
|
|
- return watched_models
|
|
|
-
|
|
|
- def init_model_content(self):
|
|
|
- """get model content structure"""
|
|
|
- return {
|
|
|
- "score": "",
|
|
|
- "pdparams": "",
|
|
|
- "pdema": "",
|
|
|
- "pdopt": "",
|
|
|
- "pdstates": "",
|
|
|
- "inference_config": "",
|
|
|
- "pdmodel": "",
|
|
|
- "pdiparams": "",
|
|
|
- "pdiparams.info": "",
|
|
|
- }
|
|
|
-
|
|
|
- def update_result(self, result, train_output):
|
|
|
- """update every result"""
|
|
|
- train_output = Path(train_output).resolve()
|
|
|
- config_path = train_output.joinpath("config.yaml").resolve()
|
|
|
- if not config_path.exists():
|
|
|
- return result
|
|
|
-
|
|
|
- model_name = result["model_name"]
|
|
|
- if (
|
|
|
- model_name in self.config_recorder
|
|
|
- and self.config_recorder[model_name] != config_path
|
|
|
- ):
|
|
|
- result["models"] = self.init_model_pkg()
|
|
|
- result["config"] = config_path
|
|
|
- self.config_recorder[model_name] = config_path
|
|
|
-
|
|
|
- result["train_log"] = self.update_train_log(train_output)
|
|
|
- result["visualdl_log"] = self.update_vdl_log(train_output)
|
|
|
- result["label_dict"] = self.update_label_dict(train_output)
|
|
|
-
|
|
|
- model = self.get_model(result["model_name"], config_path)
|
|
|
-
|
|
|
- params_path_list = list(
|
|
|
- train_output.glob(
|
|
|
- ".".join(
|
|
|
- [self.get_ith_ckp_prefix("[0-9]*"), self.get_the_pdparams_suffix()]
|
|
|
- )
|
|
|
- )
|
|
|
- )
|
|
|
- epoch_ids = []
|
|
|
- for params_path in params_path_list:
|
|
|
- epoch_id = self.get_epoch_id_by_pdparams_prefix(params_path.stem)
|
|
|
- epoch_ids.append(epoch_id)
|
|
|
- epoch_ids.sort()
|
|
|
- # TODO(gaotingquan): how to avoid that the latest ckp files is being saved
|
|
|
- # epoch_ids = epoch_ids[:-1]
|
|
|
- for i in range(1, self.last_k + 1):
|
|
|
- if len(epoch_ids) < i:
|
|
|
- break
|
|
|
- self.update_models(
|
|
|
- result,
|
|
|
- model,
|
|
|
- train_output,
|
|
|
- f"last_{i}",
|
|
|
- self.get_ith_ckp_prefix(epoch_ids[-i]),
|
|
|
- )
|
|
|
- self.update_models(
|
|
|
- result, model, train_output, "best", self.get_best_ckp_prefix()
|
|
|
- )
|
|
|
- return result
|
|
|
-
|
|
|
- def update_models(self, result, model, train_output, model_key, ckp_prefix):
|
|
|
- """update info of the models to be saved"""
|
|
|
- pdparams = train_output.joinpath(
|
|
|
- ".".join([ckp_prefix, self.get_the_pdparams_suffix()])
|
|
|
- )
|
|
|
- if pdparams.exists():
|
|
|
- recorder_key = f"{train_output.name}_{model_key}"
|
|
|
- if (
|
|
|
- model_key != "best"
|
|
|
- and recorder_key in self.model_recorder
|
|
|
- and self.model_recorder[recorder_key] == pdparams
|
|
|
- ):
|
|
|
- return
|
|
|
-
|
|
|
- self.model_recorder[recorder_key] = pdparams
|
|
|
-
|
|
|
- pdema = ""
|
|
|
- pdema_suffix = self.get_the_pdema_suffix()
|
|
|
- if pdema_suffix:
|
|
|
- pdema = pdparams.parent.joinpath(".".join([ckp_prefix, pdema_suffix]))
|
|
|
- if not pdema.exists():
|
|
|
- pdema = ""
|
|
|
-
|
|
|
- pdopt = ""
|
|
|
- pdopt_suffix = self.get_the_pdopt_suffix()
|
|
|
- if pdopt_suffix:
|
|
|
- pdopt = pdparams.parent.joinpath(".".join([ckp_prefix, pdopt_suffix]))
|
|
|
- if not pdopt.exists():
|
|
|
- pdopt = ""
|
|
|
-
|
|
|
- pdstates = ""
|
|
|
- pdstates_suffix = self.get_the_pdstates_suffix()
|
|
|
- if pdstates_suffix:
|
|
|
- pdstates = pdparams.parent.joinpath(
|
|
|
- ".".join([ckp_prefix, pdstates_suffix])
|
|
|
- )
|
|
|
- if not pdstates.exists():
|
|
|
- pdstates = ""
|
|
|
-
|
|
|
- score = self.get_score(Path(pdstates).resolve().as_posix())
|
|
|
-
|
|
|
- result["models"][model_key] = {
|
|
|
- "score": score,
|
|
|
- "pdparams": pdparams,
|
|
|
- "pdema": pdema,
|
|
|
- "pdopt": pdopt,
|
|
|
- "pdstates": pdstates,
|
|
|
- }
|
|
|
-
|
|
|
- self.update_inference_model(
|
|
|
- model,
|
|
|
- pdparams,
|
|
|
- train_output.joinpath(f"{ckp_prefix}"),
|
|
|
- result["models"][model_key],
|
|
|
- )
|
|
|
-
|
|
|
- def update_inference_model(
|
|
|
- self, model, weight_path, export_save_dir, result_the_model
|
|
|
- ):
|
|
|
- """update inference model"""
|
|
|
- export_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
- export_result = model.export(
|
|
|
- weight_path=str(weight_path), save_dir=export_save_dir
|
|
|
- )
|
|
|
-
|
|
|
- if export_result.returncode == 0:
|
|
|
- inference_config = export_save_dir.joinpath("inference.yml")
|
|
|
- if not inference_config.exists():
|
|
|
- inference_config = ""
|
|
|
- use_pir = (
|
|
|
- hasattr(paddle.framework, "use_pir_api")
|
|
|
- and paddle.framework.use_pir_api()
|
|
|
- )
|
|
|
- pdmodel = (
|
|
|
- export_save_dir.joinpath("inference.json")
|
|
|
- if use_pir
|
|
|
- else export_save_dir.joinpath("inference.pdmodel")
|
|
|
- )
|
|
|
- pdiparams = export_save_dir.joinpath("inference.pdiparams")
|
|
|
- pdiparams_info = (
|
|
|
- "" if use_pir else export_save_dir.joinpath("inference.pdiparams.info")
|
|
|
- )
|
|
|
- else:
|
|
|
- inference_config = ""
|
|
|
- pdmodel = ""
|
|
|
- pdiparams = ""
|
|
|
- pdiparams_info = ""
|
|
|
-
|
|
|
- result_the_model["inference_config"] = inference_config
|
|
|
- result_the_model["pdmodel"] = pdmodel
|
|
|
- result_the_model["pdiparams"] = pdiparams
|
|
|
- result_the_model["pdiparams.info"] = pdiparams_info
|
|
|
-
|
|
|
- def init_pre_hook(self):
|
|
|
- """hook func that would be called befor init"""
|
|
|
- pass
|
|
|
-
|
|
|
- def init_post_hook(self):
|
|
|
- """hook func that would be called after init"""
|
|
|
- pass
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_the_pdparams_suffix(self):
|
|
|
- """get the suffix of pdparams file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_the_pdema_suffix(self):
|
|
|
- """get the suffix of pdema file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_the_pdopt_suffix(self):
|
|
|
- """get the suffix of pdopt file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_the_pdstates_suffix(self):
|
|
|
- """get the suffix of pdstates file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_ith_ckp_prefix(self, epoch_id):
|
|
|
- """get the prefix of the epoch_id checkpoint file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_best_ckp_prefix(self):
|
|
|
- """get the prefix of the best checkpoint file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_score(self, pdstates_path):
|
|
|
- """get the score by pdstates file"""
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- @abstractmethod
|
|
|
- def get_epoch_id_by_pdparams_prefix(self, pdparams_prefix):
|
|
|
- """get the epoch_id by pdparams file"""
|
|
|
- raise NotImplementedError
|