|
|
@@ -0,0 +1,148 @@
|
|
|
+#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
+#
|
|
|
+#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+#you may not use this file except in compliance with the License.
|
|
|
+#You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+#Unless required by applicable law or agreed to in writing, software
|
|
|
+#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+#See the License for the specific language governing permissions and
|
|
|
+#limitations under the License.
|
|
|
+
|
|
|
+from __future__ import absolute_import
|
|
|
+import paddle.fluid as fluid
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import paddlex as pdx
|
|
|
+
|
|
|
+__all__ = ['export_onnx']
|
|
|
+
|
|
|
+
|
|
|
+def export_onnx(model_dir, save_dir, fixed_input_shape):
|
|
|
+ assert len(fixed_input_shape) == 2, "len of fixed input shape must == 2"
|
|
|
+ model = pdx.load_model(model_dir, fixed_input_shape)
|
|
|
+ model_name = os.path.basename(model_dir.strip('/')).split('/')[-1]
|
|
|
+ export_onnx_model(model, save_dir)
|
|
|
+
|
|
|
+
|
|
|
+def export_onnx_model(model, save_dir):
|
|
|
+ support_list = [
|
|
|
+ 'ResNet18', 'ResNet34', 'ResNet50', 'ResNet101', 'ResNet50_vd',
|
|
|
+ 'ResNet101_vd', 'ResNet50_vd_ssld', 'ResNet101_vd_ssld', 'DarkNet53',
|
|
|
+ 'MobileNetV1', 'MobileNetV2', 'DenseNet121', 'DenseNet161',
|
|
|
+ 'DenseNet201'
|
|
|
+ ]
|
|
|
+ if model.__class__.__name__ not in support_list:
|
|
|
+ raise Exception("Model: {} unsupport export to ONNX".format(
|
|
|
+ model.__class__.__name__))
|
|
|
+ try:
|
|
|
+ from fluid.utils import op_io_info, init_name_prefix
|
|
|
+ from onnx import helper, checker
|
|
|
+ import fluid_onnx.ops as ops
|
|
|
+ from fluid_onnx.variables import paddle_variable_to_onnx_tensor, paddle_onnx_weight
|
|
|
+ from debug.model_check import debug_model, Tracker
|
|
|
+ except Exception as e:
|
|
|
+ print(e)
|
|
|
+ print(
|
|
|
+ "Import Module Failed! Please install paddle2onnx. Related requirements \
|
|
|
+ see https://github.com/PaddlePaddle/paddle2onnx.")
|
|
|
+ sys.exit(-1)
|
|
|
+ place = fluid.CPUPlace()
|
|
|
+ exe = fluid.Executor(place)
|
|
|
+ inference_scope = fluid.global_scope()
|
|
|
+ with fluid.scope_guard(inference_scope):
|
|
|
+ test_input_names = [
|
|
|
+ var.name for var in list(model.test_inputs.values())
|
|
|
+ ]
|
|
|
+ inputs_outputs_list = ["fetch", "feed"]
|
|
|
+ weights, weights_value_info = [], []
|
|
|
+ global_block = model.test_prog.global_block()
|
|
|
+ for var_name in global_block.vars:
|
|
|
+ var = global_block.var(var_name)
|
|
|
+ if var_name not in test_input_names\
|
|
|
+ and var.persistable:
|
|
|
+ weight, val_info = paddle_onnx_weight(
|
|
|
+ var=var, scope=inference_scope)
|
|
|
+ weights.append(weight)
|
|
|
+ weights_value_info.append(val_info)
|
|
|
+
|
|
|
+ # Create inputs
|
|
|
+ inputs = [
|
|
|
+ paddle_variable_to_onnx_tensor(v, global_block)
|
|
|
+ for v in test_input_names
|
|
|
+ ]
|
|
|
+ print("load the model parameter done.")
|
|
|
+ onnx_nodes = []
|
|
|
+ op_check_list = []
|
|
|
+ op_trackers = []
|
|
|
+ nms_first_index = -1
|
|
|
+ nms_outputs = []
|
|
|
+ for block in model.test_prog.blocks:
|
|
|
+ for op in block.ops:
|
|
|
+ if op.type in ops.node_maker:
|
|
|
+ # TODO: deal with the corner case that vars in
|
|
|
+ # different blocks have the same name
|
|
|
+ node_proto = ops.node_maker[str(op.type)](
|
|
|
+ operator=op, block=block)
|
|
|
+ op_outputs = []
|
|
|
+ last_node = None
|
|
|
+ if isinstance(node_proto, tuple):
|
|
|
+ onnx_nodes.extend(list(node_proto))
|
|
|
+ last_node = list(node_proto)
|
|
|
+ else:
|
|
|
+ onnx_nodes.append(node_proto)
|
|
|
+ last_node = [node_proto]
|
|
|
+ tracker = Tracker(str(op.type), last_node)
|
|
|
+ op_trackers.append(tracker)
|
|
|
+ op_check_list.append(str(op.type))
|
|
|
+ if op.type == "multiclass_nms" and nms_first_index < 0:
|
|
|
+ nms_first_index = 0
|
|
|
+ if nms_first_index >= 0:
|
|
|
+ _, _, output_op = op_io_info(op)
|
|
|
+ for output in output_op:
|
|
|
+ nms_outputs.extend(output_op[output])
|
|
|
+ else:
|
|
|
+ if op.type not in ['feed', 'fetch']:
|
|
|
+ op_check_list.append(op.type)
|
|
|
+ print('The operator sets to run test case.')
|
|
|
+ print(set(op_check_list))
|
|
|
+
|
|
|
+ # Create outputs
|
|
|
+ # Get the new names for outputs if they've been renamed in nodes' making
|
|
|
+ renamed_outputs = op_io_info.get_all_renamed_outputs()
|
|
|
+ test_outputs = list(model.test_outputs.values())
|
|
|
+ test_outputs_names = [var.name for var in model.test_outputs.values()]
|
|
|
+ test_outputs_names = [
|
|
|
+ name if name not in renamed_outputs else renamed_outputs[name]
|
|
|
+ for name in test_outputs_names
|
|
|
+ ]
|
|
|
+ outputs = [
|
|
|
+ paddle_variable_to_onnx_tensor(v, global_block)
|
|
|
+ for v in test_outputs_names
|
|
|
+ ]
|
|
|
+
|
|
|
+ # Make graph
|
|
|
+ onnx_name = 'paddlex.onnx'
|
|
|
+ onnx_graph = helper.make_graph(
|
|
|
+ nodes=onnx_nodes,
|
|
|
+ name=onnx_name,
|
|
|
+ initializer=weights,
|
|
|
+ inputs=inputs + weights_value_info,
|
|
|
+ outputs=outputs)
|
|
|
+
|
|
|
+ # Make model
|
|
|
+ onnx_model = helper.make_model(
|
|
|
+ onnx_graph, producer_name='PaddlePaddle')
|
|
|
+
|
|
|
+ # Model check
|
|
|
+ checker.check_model(onnx_model)
|
|
|
+ if onnx_model is not None:
|
|
|
+ onnx_model_file = os.path.join(save_dir, onnx_name)
|
|
|
+ if not os.path.exists(save_dir):
|
|
|
+ os.mkdir(save_dir)
|
|
|
+ with open(onnx_model_file, 'wb') as f:
|
|
|
+ f.write(onnx_model.SerializeToString())
|
|
|
+ print("Saved converted model to path: %s" % onnx_model_file)
|