|
|
@@ -1,163 +0,0 @@
|
|
|
-// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
-//
|
|
|
-// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-// you may not use this file except in compliance with the License.
|
|
|
-// You may obtain a copy of the License at
|
|
|
-//
|
|
|
-// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-//
|
|
|
-// Unless required by applicable law or agreed to in writing, software
|
|
|
-// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-// See the License for the specific language governing permissions and
|
|
|
-// limitations under the License.
|
|
|
-
|
|
|
-#include <gflags/gflags.h>
|
|
|
-#include <string>
|
|
|
-#include <vector>
|
|
|
-
|
|
|
-#include "model_deploy/common/include/paddle_deploy.h"
|
|
|
-
|
|
|
-PaddleDeploy::Model* model;
|
|
|
-
|
|
|
-extern "C" __declspec(dllexport) void InitModel(const char* model_type, const char* model_filename, const char* params_filename, const char* cfg_file)
|
|
|
-{
|
|
|
- bool use_gpu = false;
|
|
|
- int gpu_id = 0;
|
|
|
-
|
|
|
- // create model
|
|
|
- model = PaddleDeploy::CreateModel(model_type); //FLAGS_model_type
|
|
|
-
|
|
|
- // model init
|
|
|
- model->Init(cfg_file);
|
|
|
-
|
|
|
- // inference engine init
|
|
|
- PaddleDeploy::PaddleEngineConfig engine_config;
|
|
|
- engine_config.model_filename = model_filename;
|
|
|
- engine_config.params_filename = params_filename;
|
|
|
- engine_config.use_gpu = use_gpu;
|
|
|
- engine_config.gpu_id = gpu_id;
|
|
|
- bool init = model->PaddleEngineInit(engine_config);
|
|
|
- if (init)
|
|
|
- {
|
|
|
- std::cout << "init model success" << std::endl;
|
|
|
- }
|
|
|
-}
|
|
|
-/*
|
|
|
-* img: input for predicting.
|
|
|
-*
|
|
|
-* nWidth: width of img.
|
|
|
-*
|
|
|
-* nHeight: height of img.
|
|
|
-*
|
|
|
-* nChannel: channel of img.
|
|
|
-*
|
|
|
-* output: result of pridict ,include category_id£¬score£¬coordinate¡£
|
|
|
-*
|
|
|
-* nBoxesNum£º number of box
|
|
|
-*
|
|
|
-* LabelList: label list of result
|
|
|
-*/
|
|
|
-extern "C" __declspec(dllexport) void ModelPredict(const unsigned char* img, int nWidth, int nHeight,int nChannel, float* output, int* nBoxesNum, char* LabelList)
|
|
|
-{
|
|
|
- // prepare data
|
|
|
- std::vector<cv::Mat> imgs;
|
|
|
-
|
|
|
- int nType = 0;
|
|
|
- if (nChannel==1)
|
|
|
- {
|
|
|
- nType = CV_8UC1;
|
|
|
- }
|
|
|
- else if (nChannel == 2)
|
|
|
- {
|
|
|
- nType = CV_8UC2;
|
|
|
- }
|
|
|
- else if (nChannel == 3)
|
|
|
- {
|
|
|
- nType = CV_8UC3;
|
|
|
- }
|
|
|
- else if (nChannel == 4)
|
|
|
- {
|
|
|
- nType = CV_8UC4;
|
|
|
- }
|
|
|
-
|
|
|
- cv::Mat input = cv::Mat::zeros(cv::Size(nWidth, nHeight), nType);
|
|
|
- memcpy(input.data, img, nHeight * nWidth * nChannel * sizeof(uchar));
|
|
|
- //cv::imwrite("./1.png", input);
|
|
|
- imgs.push_back(std::move(input));
|
|
|
-
|
|
|
- // predict
|
|
|
- std::vector<PaddleDeploy::Result> results;
|
|
|
- bool pre = model->Predict(imgs, &results, 1);
|
|
|
- if (pre)
|
|
|
- {
|
|
|
- std::cout << "model predict success" << std::endl;
|
|
|
- }
|
|
|
- nBoxesNum[0] = results.size();
|
|
|
- std::string label ="";
|
|
|
- for (int num = 0; num < results.size(); num++)
|
|
|
- {
|
|
|
- //std::cout << "res: " << results[num] << std::endl;
|
|
|
- for (int i = 0; i < results[num].det_result->boxes.size(); i++)
|
|
|
- {
|
|
|
- //std::cout << "category: " << results[num].det_result->boxes[i].category << std::endl;
|
|
|
- label = label + results[num].det_result->boxes[i].category+ " ";
|
|
|
- // labelindex
|
|
|
- output[num * 6 + 0] = results[num].det_result->boxes[i].category_id;
|
|
|
- // score
|
|
|
- output[num * 6 + 1] = results[num].det_result->boxes[i].score;
|
|
|
- //// box
|
|
|
- output[num * 6 + 2] = results[num].det_result->boxes[i].coordinate[0];
|
|
|
- output[num * 6 + 3] = results[num].det_result->boxes[i].coordinate[1];
|
|
|
- output[num * 6 + 4] = results[num].det_result->boxes[i].coordinate[2];
|
|
|
- output[num * 6 + 5] = results[num].det_result->boxes[i].coordinate[3];
|
|
|
- }
|
|
|
- }
|
|
|
- memcpy(LabelList, label.c_str(), strlen(label.c_str()));
|
|
|
-}
|
|
|
-
|
|
|
-extern "C" __declspec(dllexport) void DestructModel()
|
|
|
-{
|
|
|
- delete model;
|
|
|
- std::cout << "destruct model success" << std::endl;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-//DEFINE_string(model_filename, "", "Path of det inference model");
|
|
|
-//DEFINE_string(params_filename, "", "Path of det inference params");
|
|
|
-//DEFINE_string(cfg_file, "", "Path of yaml file");
|
|
|
-//DEFINE_string(model_type, "", "model type");
|
|
|
-//DEFINE_string(image, "", "Path of test image file");
|
|
|
-//DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
|
|
|
-//DEFINE_int32(gpu_id, 0, "GPU card id");
|
|
|
-//
|
|
|
-//int main(int argc, char** argv) {
|
|
|
-// // Parsing command-line
|
|
|
-// google::ParseCommandLineFlags(&argc, &argv, true);
|
|
|
-//
|
|
|
-// // create model
|
|
|
-// PaddleDeploy::Model* model = PaddleDeploy::CreateModel(FLAGS_model_type);
|
|
|
-//
|
|
|
-// // model init
|
|
|
-// model->Init(FLAGS_cfg_file);
|
|
|
-//
|
|
|
-// // inference engine init
|
|
|
-// PaddleDeploy::PaddleEngineConfig engine_config;
|
|
|
-// engine_config.model_filename = FLAGS_model_filename;
|
|
|
-// engine_config.params_filename = FLAGS_params_filename;
|
|
|
-// engine_config.use_gpu = FLAGS_use_gpu;
|
|
|
-// engine_config.gpu_id = FLAGS_gpu_id;
|
|
|
-// model->PaddleEngineInit(engine_config);
|
|
|
-//
|
|
|
-// // prepare data
|
|
|
-// std::vector<cv::Mat> imgs;
|
|
|
-// imgs.push_back(std::move(cv::imread(FLAGS_image)));
|
|
|
-//
|
|
|
-// // predict
|
|
|
-// std::vector<PaddleDeploy::Result> results;
|
|
|
-// model->Predict(imgs, &results, 1);
|
|
|
-//
|
|
|
-// std::cout << results[0] << std::endl;
|
|
|
-// delete model;
|
|
|
-// return 0;
|
|
|
-//}
|